
A Graph Rewriting Semantics for the
Polyadic π-Calculus∗

BARBARA KÖNIG
Fakultät für Informatik, Technische Universität München

Abstract

We give a hypergraph rewriting semantics for the polyadic π-calculus,
based on rewriting rules equivalent to those in the double-pushout approach.
The structural congruence of the π-calculus is replaced by hypergraph iso-
morphism. The correctness of the encoding from the graph-based notation
into π-calculus can be shown by using an intermediate notation, so-called
name-based graph terms.

1 Introduction

We present an alternative semantics for the asynchronous polyadic π-calculus,
describing reductions by (hyper-)graph rewriting steps. The π-calculus [7] is a
well-known calculus describing communicating processes with mobility.

The aim of this paper is to show that graph rewriting can be used as a natural
semantics for the π-calculus and related calculi, and it wants to describe a precise
way of connecting the string-based (or name-based) representation of processes
to their graph-based representation.

While the first version of the π-calculus had a labelled transition semantics, in
the last few years it became more and more common to use reduction semantics,
splitting the labelled transitions into two relations: a structural congruence relating
processes of the same structure and an unlabelled reduction relation. This was
first proposed by Berry and Boudol with their chemical abstract machine [1] and
is now perceived as a natural way of presenting the semantics of process calculi.

The idea is to go one step further, to represent processes as graphs instead of
strings, and to replace structural congruence by graph isomorphism. This gives a
denotational semantics to at least part of the reduction relation and can be very
useful in the design of new process calculi. Especially in fusion calculus and its
variants—a process calculus where a process may choose to fuse two channel
names [11]—it is not obvious how the structural congruence should look like.
Furthermore string-based process calculi have to deal with alpha-conversion, i.e.

∗Research supported by SFB 342 (subproject A3) of the DFG.

1

2

the renaming of bound names, which often impedes the analysis of processes.
Also interaction is done in a non-local way, i.e. parts of a process which are at the
opposite ends of its description may interact with each other (this is partly allevi-
ated by the reduction semantics), while in a graph rewriting semantics, interacting
components are always adjacent.

Furthermore a graph-based calculus may serve as a basis for the analysis of
mobile processes [4] and as a starting point for a visual concurrent programming
language. We also want to demonstrate the usefulness of our graph construction
operator (introduced in [5]) which can be used to reason about graphs in an in-
ductive way.

When modelling π-calculus semantics by graph rewriting, we use hierarchical
graphs (our design desicion are explained in more detail in section 4). The encod-
ing of the graph-based semantics into the standard semantics requires an interme-
diate step: the representation of hypergraphs in a name-based notation (section 3)
which highlights the different perception regarding connections in graph notation
(explicit connections) and in string notation (implicit connections by common
names).

2 Hypergraphs and Hypergraph Construction

We first define some basic notions concerning hypergraphs.

Definition 1 (Hypergraph, Hypergraph Morphism, Isomorphism) Let L be a
fixed set of labels. A hypergraph H = (VH ,EH ,sH , lH ,χH) consists of a set of nodes
VH , a set of edges EH , a source mapping sH : EH → V ∗

H , a labelling lH : EH → L
and a duplicate-free string χH ∈ V ∗

H of external nodes. A hypergraph morphism
φ : H → H ′ maps nodes to nodes and edges to edges, preserving source nodes and
labelling. A strong morphism (denoted by the arrow �) additionally preserves
the external nodes. We write H ∼= H ′ (H is isomorphic to H ′) if there is a bijective
strong morphism from H to H ′.

The arity of a hypergraph H is defined as ar(H) = |χH | while the arity of an
edge e of H is ar(e) = |sH(e)|. We can regard hypergraphs and (strong) hyper-
graph morphisms as objects respectively morphisms of a category.

Notation: We call a hypergraph discrete, if its edge set is empty. By m we
denote a discrete graph of arity m ∈ lN with m nodes where every node is external
(external nodes are labelled (1), (2), . . . in their respective order).

H = edgen(l) is the hypergraph with exactly one edge e with label l where
sH(e) = χH , |χH |= n and VH = Set(χH), where Set(s̃) is the set of all elements of
a string s̃.

We now present a “concatenation operation” on hypergraphs. The construc-
tion plan telling us how this concatenation is supposed to happen is represented by

3

hypergraph morphisms mapping discrete graphs to discrete graphs. The following
definitions use concepts from category theory, namely categories and colimits.

Definition 2 (Hypergraph Construction) Let H1, . . . ,Hn be hypergraphs and
let1 ζi : mi → D, i ∈ [n] be morphisms where ar(Hi) = mi and D is discrete.
There is always a unique strong morphism φi : mi � Hi for
every i ∈ [n]. Let H be the colimit of ζ1, . . . ,ζn,φ1, . . . ,φn

such that φ is a strong morphism. We define:
Nn

i=1(Hi,ζi) =
H. (Alternatively we write (H1,ζ1) ⊗ . . . ⊗ (Hn,ζn)—or
⊗(H1,ζ1), if n = 1—instead of

Nn
i=1(Hi,ζi).)

i

ii

m

H

ζ

H

η

D

φ ii

φ

Rewriting based on our graph construction operator has the same expressive
power as the double-pushout approach (with injective production spans) of Ehrig
[2] (see also [5]).

3 A Name-based Notation for Hypergraphs

We now introduce a name-based notation for hypergraphs which will help us
make the transition from the graph rewriting semantics to the standard π-calculus.

Definition 3 (Name-based Graph Terms) Let N be a set of names. A name-
based graph term h has one of the following forms:

(Empty Graph) 0 (Node) 〈a〉, a ∈ N (Parallel Composition) h1|h2

(Edge labelled l) (l)[t̃], l ∈ L, t̃ ∈ N∗ (Node Hiding) (νc)h, c ∈ N

where h1,h2,h are again name-based graph-terms.
The set of free names fn(h) of a term h contains all names in h which are not

bound by ν. Two graph terms are considered the same if they can be transformed
into one another by consistent renaming of bound names (= α-conversion).

Notation: If s̃ = a1 . . .an is a string, then bs̃ci = ai denotes its i-th element. If M is
a set of elements, then s̃∩M denotes the string which results from removing all
elements from s̃ which are not in M.

Let t̃ be a duplicate-free string of names, s̃ an arbitrary string of the same
length and h a name-based graph term. Then h{s̃/t̃} denotes the simultaneous
substitution of all names bt̃ci by bs̃ci. Let s̃, t̃ be strings of names where Set(s̃) ⊆
Set(t̃), n = |s̃|, m = |t̃| and t̃ contains no duplicates. ζ s̃→̃t : n → m is a morphism
satisfying ζ s̃→̃t(bχnci) = bχmc j ⇐⇒ bs̃ci = bt̃c j.

Definition 4 (Interpretation of Name-based Graph Terms)
Let h be a name-based graph term and let t̃ ∈ N∗ be a duplicate-free string

satisfying fn(h) = Set(t̃). We define ∆t̃(h) with:

1[n] stands for the set {1, . . . ,n}.

4

∆ε(0) = 0 ∆a(〈a〉) = 1 ∆t̃(h1| . . . |hn) =
Nn

i=1(∆t̃i(hi),ζt̃i→t̃), t̃i = t̃ ∩ fn(hi)

∆t̃((l)[s̃]) = ⊗(edge| s̃|(l),ζ s̃→̃t) ∆t̃((νc)h) =

{

⊗(∆t̃c(h),ζ) if c ∈ fn(h)
∆t̃(h) otherwise

where ζ is a discrete morphism hiding the last external node of ∆t̃c(h).

There is a set of equations completely characterizing hypergraph isomorphism
on name-based graph terms. The rules are strongly reminiscent of structural con-
gruence in process calculi.

Proposition 1 (Equivalence for Name-based Graph Terms) Let ' be the small-
est congruence generated by the rules below. Two terms h,h′ are equivalent wrt.
these equations if and only if ∆t̃(h) ∼= ∆t̃(h′).

h1|h2 ' h2|h1 h1|(h2|h3) ' (h1|h2)|h3 (νc)0 ' 0 h|0 ' h

(νc)(νb)h ' (νb)(νc)h (l)[a1 . . .an]|〈ai〉 ' (l)[a1 . . .an]

〈c〉|〈c〉 ' 〈c〉 ((νc)h1)|h2 ' (νc)(h1|h2) if c 6∈ fn(h2)

We now define and relate rewrite steps in the two notations:

Proposition 2 (Rewriting Hypergraphs) Let L,R be two hypergraphs of the
same arity. By →(L,R) we denote the smallest relation generated by L →(L,R) R
and closed under hypergraph construction and isomorphism.

Now let l,r be two name-based graph terms satisfying fn(l) = fn(r) = Set(t̃)
where t̃ ∈ N∗ contains no duplicates. The relation →(l,r) is generated by the rule
l{s̃/t̃}→(l,r) r{s̃/t̃} and is closed under context and '.

It holds that h →(l,r) h′ if and only if ∆ s̃(h) →(∆t̃ (l),∆t̃ (r)) ∆ s̃(h′) (where s̃ ∈ N∗

contains exactly the free names of h).

4 Process Graphs

We show how to define a graph rewriting semantics for the asynchronous polyadic
π-calculus [7] with so-called process graphs. In section 5 we show that this seman-
tics is basically equivalent to the semantics of the π-calculus.

We adhere to the following design decisions: during reduction, merging of
nodes is performed only on the outer level. There is a clear seperation of levels
(speaking in π-calculus terms: everything beyond a prefix or beyond a replication
operator ! is on another level). As in π-calculus there is no reduction other than
on the outermost level. Merging of channels which is done immediately in the
π-calculus (by name substitution) is passed to other levels only when they emerge
on the outer level during reduction.

Definition 5 (Process Graphs) A process graph P is inductively defined as fol-
lows: P is a hypergraph where each edge e is either labelled with (k,n)Q where

5

Q is again a process graph, 1 ≤ n ≤ ar(Q) and 1 ≤ k ≤ ar(e)−n (e is a process
waiting for a message with n ports arriving at its k-th node), with !Q (e is a pro-
cess which can replicate itself) or with the constant M (e is a message sent to its
last node).

The structural congruence on process graphs is the smallest equivalence closed
under isomorphism, graph construction and rule (a) below (replication uses the
operator P2Q = (P,ζ)⊗ (Q,ζ) where ζ : m � m and m = ar(Q) = ar(P)). The
reduction relation (reception of a message and its nodes by a process) is generated
by rule (b) and is closed under isomorphism and graph construction.

(a)
(1) (m) (m)(1)

...

!Q

...

!QQ

(b)
(m)(k)(1) (m+n)(m+1)

M Q(k,n)Q

...

5 Encoding the π-Calculus

In order to show how process graphs are related to the π-calculus we give an
encoding, transforming process graphs into expressions in the π-calculus. We use
the asynchronous polyadic π-calculus without choice which can be described by
the following syntax (we assume that N is a fixed set of names):

p := 0 | (νc)p | c̄〈ã〉 | c(x̃).p | p1|p2 | !p c ∈ N, ã, x̃ ∈ N∗

The operational semantics of the π-calculus is defined as follows: structural
congruence ≡π is the smallest congruence closed under α-conversion and under
the following rules:

p1|p2 ≡π p2|p1 p1|(p2|p3) ≡π (p1|p2)|p3 (νc)0 ≡π 0 !p ≡π!p|p

p|0 ≡π p (νc)(νb)p ≡π (νb)(νc)p ((νc)p1)|p2 ≡π (νc)(p1|p2), c 6∈ fn(p2)

The reduction relation →π satisfies c(x̃).p | c̄〈ã〉 →π p{ã/x̃} and is closed under
parallel composition, hiding and structural congruence.

Definition 6 (Encoding) Let P be a process graph and let t̃ ∈ N∗ be a sequence
without duplicates such that |t̃|= ar(P). We define the encoding Θt̃(P) inductively
as follows:

(Hypergraph) Θt̃(∆t̃(h)) = Θ(h) (Node/Empty Graph) Θ(〈a〉) = Θ(0) = 0

(Replication) Θ((!Q)[t̃]) =! [Θ ũ(Q){t̃/ũ}] (Message) Θ((M)[t̃c]) = c̄〈t̃〉

(Process) Θ(((k,n)Q)[t̃]) = bt̃ck(x̃).[Θ ũ(Q){t̃ x̃/ũ}], x̃ ∈ Nn

(Parallel Comp.) Θ(h1|h2) = Θ(h1) | Θ(h2) (Hiding) Θ((νc)h) = (νc)Θ(h)

where ũ, x̃ ∈ N∗ are sequences of distinct fresh names. Θt̃ is well-defined (up to
isomorphism) because of proposition 1 and the definition of structural congru-
ence.

6

Proposition 3 Let p be an arbitrary expression in the asynchronous polyadic π-
calculus. Then there exists a process graph P and a string t̃ ∈ N∗ (without dupli-
cates) such that Θt̃(P) ≡π p. Furthermore for process graphs P,P′ and for every
duplicate-free string t̃ ∈ N∗ with |t̃| = ar(P) = ar(P′) it is true that:

(a) P ≡ P′ implies Θt̃(P) ≡π Θt̃(P′) (b) P → P′ implies Θt̃(P) →π Θt̃(P)

(c) Θt̃(P) →π p′ implies the existence of P′ with P → P′ and Θt̃(P′) ≡π p′

The implication in (a) above does not hold for the opposite direction. This is
due to several reasons: isolated nodes in the process graph which do not appear
in its π-calculus counterpart, the order of nodes with respect to an edge which is
not preserved by the translation, and delayed substitution. All this complicates the
proof of the correctness of the encoding but gives an easier graph-based seman-
tics.

By using a barbed congruence for process graphs (barbed congruence [8] is a
bisimulation relation which can be defined more or less independently of specific
process calculi) it is not hard to show that the encoding Θt̃ is fully abstract with
respect to barbed congruence (i.e. it preserves barbed congruence).

6 Fusions and Duplicates in the External Nodes

Up until now we demanded that the sequence of external nodes of a hypergraph
may not contain any duplicates. The advantages of dropping this restriction are
the following: if, in the right-hand side of a rewrite rule, a node appears twice in
the sequence of external nodes, the rewriting step fuses these two nodes.

The question now is: are there any problems if we drop the restriction? The
categorical construction operation can be defined as before, yet there are compli-
cations in the name-based notation. Consider the hypergraph h = (A)[ab] | (B)[ab]
and the rewrite rule ((A)[ab],(C)[aa]). This rewrite rule should fuse the nodes of
the edge labelled B, i.e. h should reduce to (C)[aa] | (B)[aa], which requires a
non-local definition of a rewriting step.

The same problem arises when defining process calculi where processes are
able to fuse two names on their own. The fusion calculus [11] solves the problem
by having non-local reduction rules. One appropriate solution would be to give a
name-based notation for hypergraphs with duplicates in their external nodes and
to use the equivalence rules for the structural congruence of the corresponding
process calculus.

7 Conclusion and Comparison to Related Work

We have presented a graph rewriting semantics for the π-calculus. While it has
always been common knowledge that structural congruence corresponds to graph

7

isomorphism and it has been customary to draw processes as flow-graphs for vi-
sualization purposes, there are very few papers formalizing this connection, es-
pecially we do not know of any paper doing this by introducing a name-based
notation for graphs. In [10] a term-oriented presentation of hypergraphs (simi-
lar to our name-based notation) is made, but no connection to process calculi is
established.

[9] gives a concurrent (labelled transition) semantics based on graph rewrit-
ing for the π-calculus, where, in contrast to our semantics, nodes of the graph
are labelled with channel names and the rewriting rules are rather complex. An
encoding of the π-calculus into closed action calculi (which have a different cat-
egorical graph model than ours) is presented in [3], where the translation is less
strict concerning the seperation of hierarchies. Graph notations for different sys-
tems of concurrent or interaction combinators (which are related to π-calculus in
the same way combinator logic is related to the λ-calculus) are given in [12, 6].
Because of the simple nature of combinators, the resulting graphs are not hierar-
chical.

References
[1] Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoretical Com-

puter Science, 96:217–248, 1992.
[2] H. Ehrig. Introduction to the algebraic theory of graphs. In Proc. 1st International

Workshop on Graph Grammars, pages 1–69. Springer-Verlag, 1979. LNCS 73.
[3] Philippa Gardner. Closed action calculi. Theoretical Computer Science (in associa-

tion with the conference on Mathematical Foundations in Programming Semantics),
1998.

[4] Barbara König. Generating type systems for process graphs. In Proc. of CONCUR
’99, pages 352–367. Springer-Verlag, 1999. LNCS 1664.

[5] Barbara König. Hypergraph construction and its application to the compositional
modelling of concurrency. In GRATRA ’2000, 2000.

[6] Yves Lafont. Interaction combinators. Information and Computation, 137(1):69–
101, 1997.

[7] Robin Milner. The polyadic π-calculus: a tutorial. In Logic and Algebra of Specifi-
cation. Springer-Verlag, 1993.

[8] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In Proc. of ICALP ’92.
Springer-Verlag, 1992. LNCS 623.

[9] Ugo Montanari and Marco Pistore. Concurrent semantics for the π-calculus. Elec-
tronic Notes in Theoretical Computer Science, 1, 1995.

[10] Ugo Montanari and Francesca Rossi. Graph rewriting and constraint solving for
modelling distributed systems with synchronization. In Coordination Languages and
Models, pages 12–27. Springer-Verlag, 1996. LNCS 1061.

[11] Joachim Parrow and Björn Victor. The fusion calculus: Expressiveness and symmetry
in mobile processes. In Proc. of LICS ’98, 1998.

[12] Nobuko Yoshida. Graph notation for concurrent combinators. In Proc. of TPPP ’94.
Springer-Verlag, 1994. LNCS 907.

