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Abstract. Sesqui-pushout (sqpo) rewriting—“sesqui” means “one and
a half” in Latin—is a new algebraic approach to abstract rewriting in
any category. sqpo rewriting is a deterministic and conservative extension
of double-pushout (dpo) rewriting, which allows to model “deletion in
unknown context”, a typical feature of single-pushout (spo) rewriting,
as well as cloning.
After illustrating the expressiveness of the proposed approach through
a case study modelling an access control system, we discuss sufficient
conditions for the existence of final pullback complements and we analyze
the relationship between sqpo and the classical dpo and spo approaches.

1 Introduction

In the area of graph transformation the two main categorical approaches used to
describe the effect of applying a rule to a graph are the double-pushout approach
(dpo [2, 7]) and the single-pushout approach (spo [5, 17]). Both approaches use
concepts of category theory to obtain an elegant and compact description of
graph rewriting, but they differ with respect to the kind of morphisms under
consideration, the form of the rules, and the diagrams the rewriting steps are
based on. The aim of this paper is to propose a new categorical approach to
rewriting that combines the good properties of both approaches and improves
them by allowing to model cloning of structures in a natural way.

In the dpo approach [2, 7] a rule q is a span q = L
α←− K

β
−→ R of arrows in

a category of graphs and total graph morphisms. Given an occurrence of q in a
graph G, i.e., a match morphism m : L→ G from the left-hand side L to G, to
apply q to G one first deletes from G the part of the occurrence of L which is
not present in the interface K, and then one adds to the resulting graph those
parts of the right-hand side R which are not in the image of K.
This construction is described by a double-
pushout diagram as in (1) which, given q and m,
can be constructed if there exists a pushout com-
plement of α and m, i.e., arrows A

γ
←− D

i←− K

making the resulting square a pushout.
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Since the pushout complement is not characterised by a universal property, the
dpo approach is in general non-deterministic: given a rule and a match, there
could be several (possibly non-isomorphic) resulting graphs. To guarantee deter-
minism, one usually sticks to left-linear rules, i.e., α must be injective. In this
case, it is known that a pushout complement of α and m exists if and only if m

satisfies the so-called dangling and identification condition with respect to α.

In the spo approach [5, 17], instead, a rule is an arrow q : L ⇀ R in a cat-
egory of graphs and partial graph morphisms. The application of the rule q to
a match m is modelled by a single pushout in this category and thus, by the
universal property of pushouts, spo rewriting is instrinsically deterministic. It is
well known that a partial map q : L ⇀ R can be represented, in a category with
total maps as arrows, as a span L←−� dom(q)

q
−→ R, where dom(q) is the domain

of definition of q. Given an spo rule and a match, the result of spo rewriting is
isomorphic to the result of dpo rewriting using the corresponding span and the
same match, provided that the pushout complement exists. Thus, as explained
in [5, 17], spo rewriting on graphs (or similar structures) subsumes dpo rewrit-
ing: this fact is exploited in practice by the agg system1, which implements spo

rewriting but offers to developers both spo and dpo.

Unlike dpo, spo rewriting is possible even if the match does not satisfy
the dangling or identification condition w.r.t. the rule. The dangling condition
requires that if a node of G is to be deleted, then any arc incident to it is deleted
as well. If this condition does not hold, both the node and all incident arcs are
deleted in the graph resulting from spo rewriting. Thus spo rewriting allows to
model deletion in unknown context, and this is recognized as a useful feature in
several applications. The identification condition does not allow the match to
identify in G an item to be preserved by the rule with one to be deleted. If this
condition does not hold, the spo construction deletes that item from G, and thus
the morphism from R to the resulting graph is partial. Most often this feature
(called “precedence of deletion over preservation”) is ruled out by restricting the
class of allowed matches.

The use of categorical machinery made possible, along the years, the gen-
eralization of basic definitions and main results of both the dpo and the spo

approach to a more abstract setting, where the structures on which rewriting is
performed are objects of a generic category satisfying suitable properties. The
characterization of such properties has been the main topic of the theory of
High Level Replacement (hlr) systems [4, 6], and recently the definition of ad-
hesive categories [16] (and their variants) provided a more manageable definition
of them for the dpo case. The generalization of the spo approach to suitable
categories of spans has been elaborated in [14,18].

Here we propose a new categorical approach to rewriting, called sesqui-
pushout (sqpo) rewriting. Following the trend described in the last paragraph,
the approach is presented abstractly in an arbitrary category. Rules are dpo-like
spans of arrows, and a rewriting step is defined as for dpo rewriting, but the
left pushout is replaced by a pullback satisfying a certain universal property:

1 See http://tfs.cs.tu-berlin.de/agg/.



the role of the pushout complement is played now by the so-called final pullback
complement (pbc).

Since final pullback complements are unique up to isomorphism, sqpo rewrit-
ing is deterministic. For left-linear rules, the final pullback complement coincides
with the pushout complement, if the latter exists, and in this sense sqpo rewrit-
ing subsumes dpo rewriting. When the pushout complement does not exist but
the final pullback complement does, sqpo rewriting models faithfully deletion
in unknown context, like the spo: dangling edges are removed. Strictly speak-
ing, however, sesqui-pushout rewriting does not subsume spo rewriting fully. In
fact, by construction, there is always a total morphism from the right-hand side
of the rule to the result of a sesqui-pushout rewriting step; thus if the match
identifies items to be deleted with items to be preserved then the final pullback
complement does not exist and rewriting is not allowed.

Interestingly, the final pullback complement is unique (if it exists) even for
rules which are not left-linear, unlike the pushout complement. In this case, the
final pullback complement is not a pushout complement in general, but it models
faithfully the effect of cloning, at least for some concrete structures where the
details have been worked out.

Based on the above discussion, we can explain the name we chose for the
proposed approach. “Sesqui” is the latin word for “one and a half” and suggests
that our approach is placed halfway between the single-pushout and the double-
pushout approach. In fact, metodologically, it is based on a construction similar
to the dpo, but it captures essential features of the spo as well.

After introducing the basic definitions and properties of sqpo rewriting in
Sec. 2, we demonstrate the expressiveness of the approach in Sec. 3 by modelling
the access control problem described in [11]. In Sec. 4 we show how to construct
the final pullback complement in some concrete categories, and we discuss its
existence in general. Sec. 5 is dedicated to the comparison of sqpo rewriting
with dpo and spo rewriting, and also presents a Local Church Rosser theorem
for parallel independent direct derivations. A concluding section summarizes the
results of the paper and discusses further topics of investigation.

2 Defining sesqui-pushout rewriting

In this section we present only the fundamentals of sesqui-pushout rewriting: an
example illustrating the expressiveness of this new approach is presented in the
next section.

Let C be a category, about which we do not make any assumption, for the
time being: objects and arrows belong to C if not specified otherwise. As in

the dpo approach, a rule q is a span of arrows q = L
α←− K

β
−→ R. Now the

general idea of sqpo-rewriting is to replace the left square of a dpo rewriting
diagram by a “most general” pullback complement with respect to the rule and
the matching arrow, called a final pullback complement [3,18]. We will discuss in
Section 4 how the universal property characterizing this construction is related
to the right adjoint to the pullback functor.



After the general definition, we list some basic properties of final pullback
complements and we present a simpler characterization which is applicable when
the rule q is left-linear, i.e., α is mono.

Definition 1 (Sesqui-pushout rewriting). Let q = L
α←− K

β
−→ R be a rule,

and m : L → A be an arrow, called a match. Then we write A
〈m,q〉
===⇒ B, and

we say that there is a direct derivation from A to B (using m and q) if we can
construct a diagram such as (2) where the following conditions hold:

– the right square is a pushout, and
– the arrows A

γ
←− D

i←− K form a final pull-
back complement of A

m←− L
α←− K, (this is

indicated by the sign in Diagram (2))

L

m

K
α β

i

R

c

A Dγ δ
B

(2)

where a final pullback complement of A
m←− L

α←− K is defined to be a pair of
arrows A

γ
←− D

i←− K such that

1. the square K
α−→ L

m−→ A
γ
←− D

i←− K is a pullback,
and

2. for each pullback K ′ α′

−→ L
m−→ A

γ′

←− D′ i′←− K ′,
and for each f : K ′ → K such that α ◦ f = α′,
there exists a unique f̂ : D′ → D such that γ ◦ f̂ =
γ′ and i ◦ f = f̂ ◦ i′ (see the right hand diagram).

K ′

i′

α′

f
L

m

Kα

i

A D
γ

D′γ′

bf

It immediately follows from the defining properties that the final pullback com-
plement of any pair of composable arrows is unique up to isomorphism, if it
exists. Additionally, if the rule is left-linear, i.e., L

α←− K is mono, then also γ

is mono, and it can be characterized as the largest pullback complement, where
largest is interpreted in the poset of subobjects of A. These facts are formalized
in the following lemma.

Lemma 2 (Properties of final pullback complements).

In the square on the right let A
γ
←− D

i←− K be a final
pullback complement. Then the following facts hold.

L
m

K
α

i

A Dγ

1. If A
γ′

←− D′ i′←− K is another final pullback comple-
ment of A

m←− L
α←− K, then there is a unique isomor-

phism φ : D′ → D such that φ ◦ i′ = i and γ ◦ φ = γ′.
Thus final pullback complements are unique up to iso.

L

m

K
α

i′
i

A D′
γ′

D
∼=

γ

2. If additionally α is monic then
(a) the arrow γ is monic
(b) the arrow γ can be characterized as the largest among the subobjects of

A that provide a pullback complement of A
m←− L

α
←−� K, i.e.

for every pullback complement

A
δ
←−� E

j
←− K there exists a

unique arrow ℓ : E → D such
that i = ℓ ◦ j and δ = γ ◦ ℓ.
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It is worth stressing that, by the first point of Lemma 2, uniqueness of final
pullback complements holds in any category, even if α is not monic: this fact
guarantees that the result of sqpo rewriting is determined (up to iso), also in
situations where dpo rewriting is “ambiguous” because of the existence of several
pushout complements.

3 Modelling the Access Control problem

To show the expressive power of sqpo rewriting, we model the basic Access
Control systems of [11]; for this we use simple graphs, i.e., graphs with at most
one edge of each type between two nodes. This category has all pullbacks and
pushouts, and hence a rule is applicable at a match if the relevant final pullback
complement exists. Unlike pullbacks, pushouts are not computed componentwise
on nodes and edges, because multiple parallel edges are not allowed. As discussed
in [16], the category of simple graphs is quasi-adhesive; this implies, among
other things, that pushout complements along regular monos are unique (if they
exists).2

The Discrete Access Control model [11] considers a protection system, which
controls the access of a set of subjects to a set of objects. Moreover suitable com-
mands can change the state of the system. The corresponding decision problem
consists in deciding whether a subject can obtain a certain right after apply-
ing a sequence of commands to a given initial state. Commands are sequences
of primitive operations guarded by a Boolean condition: such operations model
elementary changes of the system. Here we shall model the configurations of a
system and the primitive operations. We also introduce a new operation called
clone, which allows us to show a non-left-linear rule at work.

Definition 3 (Protection system). A protection system P = (R,C) consists
of a finite set of rights R and a finite set of commands C. A configuration
of a protection system is a triple c = (S,O,A), where S is a set of current
subjects, O is a set of current objects and A is an access matrix A[s, o] ⊆ R,
with s ∈ S, o ∈ O.

We model the configurations of a protection system as simple graphs, and
the primitive operations as sqpo-rules. We depict subjects by shaded boxes ,
objects by rounded boxes , and if a subject possesses a right i ∈ R to an
object, we draw a labelled arc between them: i . In the examples we
use the common rights for “read” and “write” access, which are labelled by r

and w, respectively.
The transformations of a configuration are defined by six primitive opera-

tions. They are create subject Xs and create object Xo for creating subjects
and objects, destroy subject Xs and destroy object Xo for destroying sub-
jects and objects, and finally enter i into(Xs,Xo) and delete i from(Xs,Xo)

2 A regular mono is an arrow which is an equalizer of some pair of parallel arrows. In
the category of simple graphs, an injective morphism is regular if it reflects edges.
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←− ∅
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(a) Application of destroySubject

enterRightW

α
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β
−→ w

deleteRightW
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β
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(b) Rules

Fig. 1. Basic rules for transforming an Access Control configuration

for entering and deleting rights. Figure 1(a) shows the destruction of a subject
by the application of the rule destroySubject, i.e., how the corresponding node
and its incident edges in the graph are deleted. The morphisms are defined by
mappings according to the numbers within the boxes. The left square is clearly
a final pullback with the bottom right graph being its final pullback comple-
ment object. In fact, the square is a pullback, and it satisfies Condition 2(b) of
Lemma 2. Note that the effect of sqpo rewriting is similar to spo, while dpo

rewriting would not be applicable here.
Figure 1(b) depicts the rules which correspond to the operations of estab-

lishing and deleting the “write” access to a subject.
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β
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↓m ↓ ↓
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r
mH©2mH©2

→
cPcP staffNurse©1staffNurse©1r

r
mH©2mH©2

Fig. 2. Application of deleteRightW

Figure 2 shows the application of deleteRightW using sqpo rewriting: the
left square is clearly a final pullback. Notice that in this case the dpo approach
would be non-deterministic, as there are two non-isomorphic pushout comple-
ments for the given α and L

m−→ G: the shown final pullback complement and G

itself. Indeed, the category of simple graphs is quasi-adhesive, and uniqueness of
pushout complements is guaranteed along regular monos only, i.e., morphisms
reflecting edges: but α is not regular.

A new and interesting aspect of non-linear rules is used in Figure 3, where a
subject is cloned. The final pullback complement construction automatically gen-
erates copies of the adjacent edges (cf. Construction 5). The rule cloneSubject

is applied to a configuration representing a staff nurse, which has access to two
objects, namely cP (representing contact information of patients) and mH (de-
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Fig. 3. Application of cloneSubject

noting medical history information of patients). When a hospital employs a new
nurse, the administrator might not want to define all rights separately again. In
general, in systems with complex configurations, operations which model cloning
are of great help.

The role based model for Access Control rbac described in [8] and [20] is
widely used, and it can be considered as an extension of the model in [11]. Graph
transformation is used in [15] for defining and verifying an rbac model: unlike in
our approach, negative application conditions are needed there to avoid multiple
edges.

4 Existence and construction of final pullback

complements

In this section we first give, as it is usual for algebraic approaches to rewrit-
ing, a concrete set-based description of sqpo-rewriting steps in the category of
graphs; since pushouts are treated as usual, we only provide a construction for
final pullback complements. In the sequel we address the question under which
conditions final pullback complements exist and how they may be constructed
“abstractly” in categories where right adjoints to pullback functors exist (most
of the categories used in practice are of this kind).

4.1 Constructing final pullback complements in Graph

Since in practice one usually works with concrete objects, i.e., with objects that
are represantable by structured sets, it is useful to present a set-theoretical con-
struction of final pullback complements in a sample category of this kind. We
consider here directed (multi-)graphs, but the construction can be generalized
easily to algebras over an arbitrary graph structure, i.e., a signature with unary
operator symbols only [17]. We present explicit constructions of the final pull-
back complement in Graph for the case in which either the left morphism of the
rule or the match are monic, i.e., injective. For left-linear rules, we also provide
a necessary and sufficient condition for its existence.



Recall that a graph is a tuple G = 〈VG,EG, srcG : EG → VG, tgt
G

: EG → VG〉
where VG and EG are disjoint sets, which are called vertices and edges, respec-
tively; the latter are connected according to the source and target functions
srcG and tgt

G
, respectively. A graph morphism f : G → H is a pair 〈fV : VG →

VH , fE : EG → EH〉 such that srcH ◦ fE = fV ◦ srcG and tgt
H
◦ fE = fV ◦ tgt

G
. The

category of graphs and graph morphisms is denoted by Graph.

Left-linear rules. Given a rule q = L
α
←−� K

β
−→ R with monic α (that we

assume w.l.o.g. to be an inclusion) and a match m : L → A, it is easy to show
that there does not exist any pullback complement (and thus, a fortiori, any
final pbc) of A

m←− L
α
←−� K if the match m is not conflict-free with respect to

α.

Definition 4 (Conflict freeness). A match m : L → A is conflict-free with

respect to L
⊇
←− K if m(L \K) ∩m(K) = ∅.

For example, for the non-conflict-free match m shown
to the right, any graph closing the square and making
it commutative should contain at least one node (the
image of ©1 under the vertical arrow), but in this case
the resulting square would not be a pullback.

{©1 ,©2 }

m 1 7→0
2 7→0

{©1 }
⊇

{©0 } ?

It is worth observing that conflict-freeness is weaker than other conditions
that are often imposed on matches in the framework of algebraic graph rewrit-
ing. For example, if the match m is monic, d-injective [17], or it satisfies the
identification condition of dpo rewriting, then it is conflict-free.

Assuming conflict-freeness, the final pullback complement exists in Graph,
and it can be described as follows as a subgraph of A (according to Condition 2(b)
of Lemma 2).

Construction 5 (Final pbc for left-linear rules in Graph) Let be given a

rule L
⊇
←−� K

β
−→ R and a conflict-free match m : L→ A. Then the final pbc for

A
m←− L

⊇
←−� K is given by A

⊇
←−� D

m|K←−−− K, where D is defined as

VD = VA \m(VL \ VK)

ED = {e ∈ EA \m(EL \ EK) | srcA(e) ∈ VD ∧ tgt
A

(e) ∈ VD}

It is evident from the construction that all the edges of A that are connected
to deleted nodes are deleted as well, thus D is a well-defined graph; it is easily
shown that it is indeed a pullback complement of the given arrows, and that no
larger subgraph of A would be a pbc.

General rules, monic matches. If the left-hand side of the rule is not monic
but the match is, the final pullback complement exists in Graph and it can be
described as follows.



Construction 6 (Final pbc for monic matches in Graph) Let be given a

rule L
α←− K

β
−→ R and a monic match m : L �−→ A. Then a final pullback

complement A
γ
←− D

i←− K can be constructed as follows.

VD =
(
VA \m(VL)

)
·∪ VK , γV(u) =

{
m(αV(u)) if u ∈ VK

u if u ∈ VA

ED =

{
〈e, u, v〉 | e ∈ EA \m(EL) ∧ u, v ∈ VD ∧

srcA(e) = γV(u) ∧ tgt
A

(e) = γV(v)

}
·∪ EK

γE(e) =

{
e′ if e = 〈e′, u, v〉
m(αE (e)) otherwise

srcD(e) =

{
u if e = 〈e′, u, v〉
srcK(e) otherwise

tgt
D

(e) =

{
v if e = 〈e′, u, v〉
tgt

K
(e) otherwise

In words, the resulting graph D contains a copy of K, a copy of the largest
subgraph of A which is not in the image of m, and a suitable number of copies
of each arc of A incident to a node in m(α(K)): this has the effect of “cloning”
part of A. The proof that D is indeed a final pbc is omitted for space reasons.

Example 7 (Final pbc of a non-left-linear rule). According to Construction 6,
the final pullback complement for

�
◦ m←− ◦ α←− ◦ ◦ in Graph is

�

◦xx

�
◦ . Notice that

there are four pushout complements of the given arrows: ◦

�

◦ , ◦ x◦, ◦x◦, and ◦
�

◦ ;
hence in this case the final pbc is not a pushout complement. Incidentally, it
can be shown that also in the category of simple graphs

�

◦xx

�
◦ is a final pbc of

the given arrows, but in this case it is a pushout complement as well.
Interestingly, note that one can derive from

�

◦ a clique with n nodes by n−1
consecutive applications of the rule ◦ α←− ◦ ◦ id−→ ◦ ◦.

General rules, general matches. In the case of non-left-linear rules and
non-injective matches, the exact conditions for the existence of final pullback
complements in Graph and the details of its construction are rather involved,
and go beyond the scope of this paper; the interested reader is encouraged to
use the constructions of [9] to specialize the results in Section 4.2 to the category
of graphs. One of the main issues of this general case is that the final pullback
construction cannot be performed componentwise on nodes and edges.

Recall that in the case of dpo-rewriting, restricting to monic matches actually
enhances expressiveness [10], in the sense of modelling power. It is left as future
work to check if a similar result holds for sqpo-rewriting as well.

4.2 Final pullback complements in arbitrary categories

In this section we provide sufficient conditions for the existence of final pullback
complements in a category. We first need to introduce some categorical concepts.
We assume a fixed category C, to which all mentioned objects and arrows belong
unless we say otherwise.



Definition 8 (Slice category and pullback functor). Let A be an object.

The slice category over A, denoted by C↓A, has all C-arrows (B
β
−→ A) with

codomain A as objects, and given two objects (B
β
−→ A) and (C

γ
−→ A) of C↓A

each C-arrow f : B → C satisfying the equality γ ◦ f = β is an arrow f : β → γ

in C↓A.

A pullback functor along an arrow m : L → A is a
functor m∗ : C↓A → C↓L which maps each object

β ∈ ob(C↓A) to m∗(β) ∈ ob(C↓L)

and provides an additional arrow m′
β : m∗(B) → B

such that the right hand diagram is a pullback.
Further each arrow f : β → γ in C↓A is mapped to the
unique arrow m∗(f) : m∗(β) → m∗(γ) such that the
following is true, by the universal property of pullbacks:

m∗(γ) ◦m∗(f) = m∗(β) ∧ m′
γ ◦m∗(f) = f ◦m′

β.

L
m

m∗(B)
m∗(β)

m′
β

A B
β

•

m∗(f)
L

m

•

A C
γ

B
β

f

Given a category C and an arrow m such that the pullback functor m∗ : C↓A →
C↓L exists, the right adjoint to m∗, if it exists, is usually denoted by Πm : C↓L →
C↓A. Even if Πm does not exist, it might exist partially at an object α ∈
ob(C↓L). In this case Πm(α) satisfies a univeral property which can be described
as follows.

Definition 9 (Right adjoints (partial)).

Let m : L → A be an arrow, let m∗ : C↓A →
C↓L be a pullback functor, and let (K α−→ L) ∈
ob(C↓L) be an object. Then the right adjoint
Πm : C↓L → C↓A to m∗ exists partially at α if
there is an object Πm(α) ∈ C↓A and an arrow
εα : m∗

(
Πm(α)

)
→ α in C↓L such that for ev-

ery (D δ−→ A) ∈ ob(C↓A) and each f : m∗(δ) →

α there exists a unique f̂ : δ → Πm(α) such that

εα ◦m∗(f̂) = f .

L

m

Kα
•

m∗(bf)

m∗(δ)

f

•

εα

m∗(Πm(α))

A •
Πm(α)

D

δ

bf

To illustrate these definitions we give an example, based on [9], where we talk
about the simpler right adjoint to the preimage functor in Set.

Example 10 (The adjunction m−1 ⊣ ∀m). Consider a function m : L → A and
the pre-image functor m−1 : 〈℘(A),⊆〉 → 〈℘(L),⊆〉 (recall that every poset gives
rise to a category). The functor m−1 is essentially the restriction of a pullback
functor m∗ : Set↓A → Set↓L, since given a subset D ∈ ℘(A), m∗ maps the

inclusion morphism D
⊆

�−→ A to some mono m∗(D) �−→ L, such that m∗(D) ∼=
m−1(D). For each subset K ∈ ℘(L) we define the set ∀m(K) ⊆ A by

∀m(K) = {a ∈ A | ∀ℓ ∈ m−1({a}). ℓ ∈ K}.



In fact, this definition of ∀m makes it a functor ∀m : 〈℘(L),⊆〉 → 〈℘(A),⊆〉.
Note that ∀m can be seen as the restriction of Πm : Set↓L → Set↓A to the
subcategory 〈℘(L),⊆〉, since Πm maps monos into L to monos into A.

Further one verifies that for all subsets D ∈ ℘(A)

m−1(D) ⊆ K if and only if D ⊆ ∀m(K). (3)

To make the link to Definition 9 more precise, note that the co-unit for K

corresponds to the inclusion m−1
(
∀m(K)

)
⊆ K; further the Equivalence (3)

implies that for all sets D ∈ ℘(A), if the inclusion m−1(D) ⊆ K holds then
D ⊆ ∀m(K) and hence also m−1(D) ⊆ m−1

(
∀m(K)

)
hold.

The above definitions provide a sufficient condition for the existence of final
pullback complements in an arbitrary category, as stated by the following lemma.

Lemma 11 (Existence and construction of final pbc). Let A
m←− L

α←− K

be a pair of composable arrows. Assume that the pullback functor m∗ : C↓A →
C↓L exists, that the right adjoint Πm to it exists partially at α, and that the
arrow εα : m∗

(
Πm(α)

)
→ α satisfies the conditions of Definition 9. Then

1. There exists a final pullback complement for A
m←− L

α←− K iff εα is iso.
2. If εα is iso, then the pair of composable arrows 〈Πm(α),m′

Πm(α) ◦ ε−1
α 〉 is a

final pullback complement.

5 Putting sqpo into context

This section is dedicated to the relation of sesqui-pushout rewriting to the
double- and single-pushout approach, which are the most widely used categor-
ical approaches to rewriting. It should be mentioned that sqpo rewriting can
also be seen as a “conceptual instance” of the very general categorical approach
proposed by Wolfram Kahl [13], which is based on fibred categories, but space
limitations prevent us to discuss the relationship to the latter.

For the case of left-linear rules, we will, in a certain sense, locate sqpo in
between spo and dpo. In fact we will see that sqpo rewriting coincides with dpo

rewriting under mild assumptions, but its deletion mechanism is more general
and closer to the one of spo rewriting.

5.1 Relation between the sqpo and the dpo approach

The definition of sqpo rewriting differs from that of dpo rewriting only in the
construction of the left square, which is a final pullback in the former case, and a
pushout in the latter. Therefore, whenever the pushout complement of a match
with respect to (the left-hand side of) a rule exists and it is also a final pullback
complement, then the results of both constructions is the same. This holds in a
very general case, namely for left-regular rules in quasi-adhesive categories.3

3 Hence it also holds for left-linear rules in adhesive categories, which include Set,
Graph, and several categories of graph-like objects. In fact, an adhesive category is
a quasi-adhesive one where all monos are regular (see [16]).



Proposition 12 (dpo vs. sqpo). Let C be a quasi-adhesive category, let q =

L
α
←−� K

β
−→ R be a left-regular rule (i.e., such that α is regular mono) and let

A
m←− L be a match in C. Then any pushout complement A

γ
←− D

i←− K for
A

m←− L
α
←−� K is a final pullback complement. As a consequence, the following

hold.

1. If A
〈m,q〉
===⇒

dpo
B then also A

〈m,q〉
===⇒ B.

2. If A
〈m,q〉
===⇒ B and a pushout complement of A

m←− L
α
←−� K exists, then also

A
〈m,q〉
===⇒

dpo
B.

Proof. In [16] it is shown (Lemma 2.3) that in a quasi-adhesive category pushouts
along regular monos are pullbacks.
Furthermore, it is proved (Lemma 2.8) that if the square
to the right is a pushout and α is regular, then γ : D → A

enjoys the universal property of the right adjoint to the
pullback functor m∗ at α, i.e., γ ∼= Πm(α).

L
m

K
α

i

A Dγ

Thus by Lemma 11 A
γ
←− D

i←− K is a final pullback complement. ⊓⊔

For non-left-regular rules, as shown by Example 7, there exist in general sev-
eral pushout complements and hence dpo rewriting is ambiguous. In contrast,
sqpo rewriting is always deterministic, and its result models cloning, which can-
not be obtained with dpo.

5.2 Relation between the sqpo and the spo approach

We discuss now the relation between the spo and the sqpo approach. First we
concentrate on algebras for a graph structure, where the spo approach coincides
with the sqpo approach when we restrict the first to conflict-free matches and
the latter to left-linear rules. Then we briefly discuss that a similar result holds
for non-left-linear rules, in the context of the categorial generalization of the spo

approach presented in [18].

spo over graph structures. Single-pushout rewriting has been defined in [5,
17] for categories of algebras over graph structures, i.e., over signatures with
unary operator symbols only.4 For example, Graph can be seen as the category
of algebras for the signature including two sorts, V and E, and two operator
symbols, src, tgt : E → V.

For the rest of this subsection let C be the category of algebras and total
homomorphisms of an arbitrary but fixed graph structure, and let C

p be the
category having the same objects and partial morphisms as arrows: that is, an
arrow f : X ⇀ Y of C

p is a total homomorphism f : dom(f) → Y from a sub-
algebra dom(f) ⊆ X.

4 Note that all such categories can be seen as categories of set-valued functors, and
therefore they are adhesive (see [16]).



As recalled in the introduction, according to the spo approach a rule is
an arrow q : L ⇀ R of C

p, and it is applied to a total match m : L → A by
constructing a pushout in C

p. This is always possible, because C
p is co-complete.

To simulate such a direct derivation using the sqpo approach, we consider the
rule as a span q̂ = L ←−� dom(q)

q
−→ R in C, and look for the final pullback

complement of A
m←− L ←−� dom(q) in C. Then, as summarized by the next

proposition, it is possible to show that the results of the two constructions are
equal if and only if the final pullback complement exists, i.e., by Construction 5,
if and only if match m is conflict-free with respect to L←−� dom(q).

Proposition 13 (spo vs. sqpo). Let L,K,R and A be objects; let q : L ⇀ R

be an arrow of C
p, and q̂ = L

⊇
←−� dom(q)

q
−→ R be the corresponding span in C,

and let m : L→ A be a total match morphism. Then the following are true

1. If A
〈m,q̂〉
===⇒ B then A

〈m,q〉
===⇒

spo
B.

2. If A
〈m,q〉
===⇒

spo
B and m is conflict-free then A

〈m,q̂〉
===⇒ B.

The square to the right shows the result of spo rewriting
with a rule q and a non-conflict-free match m in category
Setp. Note that the function from the right-hand side of
the rule to the resulting set is partial: this effect is often
considered as unintuitive, and it is ruled out by imposing
suitable constraints on the matches.

{©1 ,©2 }

m 1 7→0
2 7→0

q

1 7→1
{©1 }

{©0 } ∅

As shown in [17] the morphism from the right-hand side to the resulting object
is total if and only if the match is conflict-free, thus sqpo rewriting rules out
exactly the spo direct derivations where this unintuitive effect shows up.

spo over arbitrary categories The spo approach has been lifted to an ab-
stract, categorical setting in [14, 18]. Following the approach of [19], in [14] a
partial morphism in a category C is defined as an equivalence class of spans of
C, where the left arrows are monic. Generalizing even further, in [18] rules are
defined as spans like L

m←− K
h−→ R, where m ∈ M and h ∈ H are required to

belong to two classes of arrows of C satisfying suitable properties: in particular,
it is not required that arrows in M are mono. Even if the technical details of
this analysis are beyond the scope of the present paper, it turns out that for
these classes of rules, every sqpo-derivation is a spo-derivation. Moreover the
reverse holds, whenever there exists a final pullback complement for the involved
matching morphism. In other words, the statement of Proposition 13 holds true
in the more general framework of [18] by replacing in point 2 the condition of
conflict-freeness with that of existence of final pullback complements.

5.3 Parallelism

After having discussed which fragments of the classical algebraic approaches are
subsumed by the new one, we present the local Church-Rosser theorem as ev-
idence that (part of) the existing parallelism theory can be transferred to the



realm of sqpo rewriting. Also a theorem concerning sequential commutativity
holds true for sqpo rewriting, but we do not present it because of space limita-
tions. We assume here that objects and arrows belong to a fixed quasi-adhesive
category C, and that rules are spans of regular monos.

Definition 14 (Parallel Independence). Let there be two direct derivations

G
〈m1,p1〉

=====⇒ H1 and G
〈m2,p2〉

=====⇒ H2. Then they are parallel independent if there
exist morphisms u : L1 → D2 and v : L2 → D1, such that γ2 ◦ u = m1 and
γ1 ◦ v = m2.

R1

n1

K1
β1

k1

α1
L1

um1

L2

v
m2

K2
α2

k2

β2
R2

n2

H1 D1
δ1

γ1
G D2γ2 δ2

H2

Definition 14 can be seen as a conservative extension of the definitions given in
the literature for spo and dpo. More precisely, if two spo direct derivations are
also sqpo-derivations, then they are parallel independent in the spo sense if and
only if they are so according to Definition 14. The same holds for dpo-parallel
independence as well, obviously.

Theorem 15 (Local Church-Rosser).

Given two parallel independent direct transforma-

tions G
〈m1,p1〉

=====⇒ H1 and G
〈m2,p2〉

=====⇒ H2, there are an

object G′ and direct transformations H1
〈m′

2,p2〉

=====⇒ G′

and H2
〈m′

1,p1〉

=====⇒ G′.

G〈m1,p1〉 〈m2,p2〉

H1

〈m′
2,p2〉

H2

〈m′
1,p1〉

G′

The proof of this theorem is very similar to the one given in [16], the difference
being that we need some additional sqpo-specific lemmas.

6 Conclusion

We have proposed a new algebraic approach to rewriting in arbitrary categories,
called sesqui-pushout rewriting, and we discussed its basic properties. In the
classical case of graphical structures and left-linear rules, its relation to the spo

and dpo approaches is summarized by the following table, where application
conditions are listed below the features of the approaches.

dpo . sqpo . spo

deletion in unknown context - X X

precedence of deletion over preservation - - X

indentification and dangling condition X - -
conflict-free matches X X -



We have a chain of simulations (indicated by the symbol .): every dpo deriva-
tion is a sqpo derivation, and every sqpo derivation is a spo derivation, by seeing
left-linear rules as partial morphisms. Furthermore, when dpo rewriting is not
possible because the dangling condition is not satisfied, if sqpo rewriting is pos-
sible then spo is possible as well, and both model deletion in unknown context.
Finally, when sqpo rewriting is not possible because the match is not conflict-
free, then dpo rewriting is not possible because the identification condition is
not satisfied, but spo rewriting is possible and the conflict is resolved in favour
of deletion. However, in this case there is no total morphism from the right-
hand side of the rule to the resulting graph: an effect that is often considered as
undesirable, and that is ruled out automatically by the new approach.

Probably the most original and interesting feature of sesqui-pushout rewriting
is the fact that it can be applied to non-left-linear rules as well, and in this case
it models the cloning of structures.

We presented a Local Church Rosser theorem for the new approach. We
are confident that most of the parallelism and concurrency theory of the dpo

and spo approaches can be lifted smoothly to sesqui-pushout rewriting: this
is a topic of ongoing research. Concluding, let us remark that we compared
the new approach only with spo and dpo because they are the most widely
used categorical approach to rewriting, but there are several others to which
sesqui-pushout rewriting has to be related as well, including the fibred approach
by Kahl [13], the double-pullback approach by Heckel [12], and the pullback
approach by Bauderon [1].

Acknowledgements. We would like to thank Paolo Baldan and Pawe l Sobociński
for enlightening discussions about the topic of the paper.
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Politècnica de Catalunya, 1997.

19. Edmund Robinson and Giuseppe Rosolini. Categories of partial maps. Information

and Computation, 79(2):95–130, 1988.
20. Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.

Role-based access control models. IEEE Computer, 29(2):38–47, 1996.


