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ation ofAttributed Graph Transformation Systems?Barbara K�onig and Vitali KoziouraAbteilung f�ur Informatik und Angewandte Kognitionswissens
haftUniversit�at Duisburg-Essen, GermanyAbstra
t. We des
ribe an approa
h for the veri�
ation of attributedgraph transformation systems (AGTS). AGTSs are graph transforma-tion systems where graphs are labelled over an algebra. We base our ver-i�
ation pro
edure on so-
alled approximated unfoldings 
ombined with
ounterexample-guided abstra
tion re�nement. Both te
hniques wereoriginally developed for non-attributed systems. With respe
t to re�ne-ment we fo
us espe
ially on dete
ting whether the spurious 
ounterex-ample is 
aused by stru
tural over-approximation or by an abstra
tionof the attributes whi
h is too 
oarse. The te
hnique is implemented inthe veri�
ation tool Augur 2 and a leader ele
tion proto
ol has beensu

essfully veri�ed.1 Introdu
tionFor pra
ti
al purposes modelling languages are usually extended with the possi-bility of adding data types and suitable operations. This is for instan
e done in
oloured Petri nets [12℄ and attributed graph transformation systems (AGTSs)[18, 9℄. Extending a GTS with attributes allows one to 
ombine the intuitivegraphi
al aspe
ts of the modelled systems with the natural data stru
tures,whi
h makes su
h extended GTSs more suitable for pra
ti
al appli
ations. Insome 
ases attributes 
an be simulated arti�
ially by en
oding them into thegraph stru
ture (sin
e GTSs are Turing-
omplete), but spe
ifying attributes di-re
tly leads to more 
ompa
t models. This is an advantage with respe
t to over-approximation te
hniques sin
e we have more 
ontrol over what is abstra
tedand in what way it is abstra
ted.In the last years we have developed a veri�
ation te
hnique for non-attributedgraph transformation systems (GTSs) [3℄, whi
h allowed us to su

essfully verifyseveral 
ase studies [7, 2, 16℄. The te
hnique approximates GTSs by Petri graphs(whi
h are Petri nets with additional hypergraph stru
ture) and re�nes the ob-tained Petri graph via 
ounterexample-guided abstra
tion re�nement (CEGAR)when ne
essary [14℄. CEGAR is a standard program analysis te
hnique whi
h re-�nes overly 
oarse approximations by looking for a spurious run, i.e., a run whi
hviolates the property to be veri�ed, but whi
h has no 
ounterpart in the originalsystem. Then the approximation is re�ned in su
h a way that the spurious run? Supported by the DFG proje
t SANDS and CRUI/DAAD Vigoni \Models basedon Graph Transformation Systems: Analysis and Veri�
ation".



disappears. This pro
edure 
an be repeated, but due to the unde
idability of theveri�
ation problem it is not guaranteed that it will eventually give a de�nitiveyes/no-answer.In this paper we apply this te
hnique, in
luding abstra
tion re�nement, toAGTSs. We des
ribe our view on AGTSs as graph transformation systems la-belled over an algebra and approximate AGTSs by attributed Petri graphs whi
hare basi
ally 
oloured Petri nets [12℄ or algebrai
 high-level nets [8℄ equipped witha hypergraph stru
ture. After performing the approximation des
ribed in [3℄ at-tributes are added to the resulting Petri graph, whi
h 
an then be analyzed as a
oloured Petri net. Sin
e the 
arrier sets underlying data types are often in�nite,we additionally need attribute abstra
tion, whi
h is standard in the frameworkof abstra
t interpretation [5℄. In the 
on
lusion we will dis
uss how the approa
hmight be extended to predi
ate abstra
tion [10, 11℄. The veri�
ation te
hniquefor AGTSs presented here was implemented in Augur 21 [15℄ and we introdu
ea 
ase study 
on
erning a leader ele
tion proto
ol and des
ribe how it has beenveri�ed with Augur 2.2 Attributed Graph Transformation Systems2.1 AlgebrasIn this se
tion we des
ribe attributed graph transformation systems (AGTSs).After introdu
ing the (standard) notion of algebra and the (non-standard) notionof Boolean algebra, we show how to de�ne and rewrite attributed graphs.De�nition 1 (signature, algebra). A signature � is a pair hS;Fi where Sis a set of sorts and F is a set of fun
tion symbols equipped with a mapping� : F ! S� � S. Sorts will also be 
alled types.A �-algebra A 
onsists of 
arrier sets (As)s2S for ea
h sort and a fun
tionfA : As1�� � ��Asn ! As for every fun
tion symbol f with �(f) = (s1 : : : sn; s).For a Boolean �-algebra we require that S 
ontains the sort Bool and thatwe have two subsets TA; FA � ABool representing the truth values.By T (�;X) we denote the usual �-term algebra, where X is a set of vari-ables, ea
h equipped with a �xed sort.For an algebra A we denote by AS the set AS = Us2S As, i.e., the union ofall 
arrier sets (under the impli
it assumption that they are all disjoint).Example 1. In our implementation we use an algebra denoted by C with sortsBool ; Int ;Str ;Unit (whi
h have as 
arrier sets the standard truth values, inte-gers, strings and one-element set respe
tively) and tuples over the �rst threesorts. We 
onsider standard operations, for instan
e +;�; �; = for the integersand 
omparison operators <;�;= in order to obtain truth values. Operators 
analso be extended to fun
tions operating on tuples.We will now de�ne a spe
i�
 type of algebra needed in the following.1 The tool is available at http://www.ti.inf.uni-due.de/resear
h/augur/.



De�nition 2 (powerset algebra). For a given �-algebra A we will denoteby P(A) its powerset algebra whi
h is an algebra over the same signature. The
arrier sets of P(A) are the powersets of the original 
arrier sets, i.e., P(A)s =P(As) and fun
tion symbols f with F(f) = (s1 : : : sn; s) are interpreted as:fP(A)(A1; : : : ; An) = ffA(a1; : : : ; an) j ai 2 Aig;where Ai 2 (P(A))si . In the 
ase of a Boolean algebra we set TP(A) = fA0 �ABool j A0 \ TA 6= ;g and similarly for FP(A).Note that in the 
ase of our example algebra C we have four truth valuesin P(C) where TP(C) = fftrueg; ftrue; falsegg, FP(C) = fffalseg; ftrue; falsegg.Going to powersets is a ne
essary step sin
e the 
on
retization of abstra
t values,whi
h will be introdu
ed later, provides us with an entire set of values, as opposedto a single value. However if we only work with single values, i.e., one-elementsets, we will get exa
tly the same results as in the original algebra.Finally we need a notion of algebra homomorphism.De�nition 3 (algebra homomorphism). Let A;B be two �-algebras. An al-gebra homomorphism h : A ! B is a family of maps (hs : As ! Bs)s2S su
hthat for ea
h f 2 F with �(f) = (s1 : : : sn; sn+1) we havehsn+1(fA(a1; : : : ; an)) = fB(hs1(a1); : : : ; hsn(an)):2.2 Attributed GraphsWe will now de�ne the notion of graphs we are working with. We 
onsider a�xed set of labels � and we start with the de�nition of hypergraphs and theirmorphisms.De�nition 4 (hypergraph). A hypergraph G is a tuple (VG; EG; 
G; lG), whereVG is a �nite set of nodes, EG is a �nite set of edges, 
G : EG ! V �G is a 
on-ne
tion fun
tion, and lG : EG ! � is the labeling fun
tion.We 
onsider a �xed typing fun
tion ltype : �! S whi
h asso
iates a sort toea
h label. The theory 
ould be easily extended to asso
iating several (named)attributes to ea
h label and this is how it is handled in our implementation.We are now ready to introdu
e attributed hypergraphs. Note that here we
hoose a di�erent representation of attributed graphs than in [9℄ where the fo
usis on viewing attributed graphs in the framework of adhesive HLR 
ategoriesand where graphs in
lude spe
i�
 data nodes. One of our main 
on
erns is tofully separate the graph stru
ture and the attributes for veri�
ation purposes.De�nition 5 (attributed hypergraph). Let A be a �-algebra. An A-attrib-uted hypergraph is a tuple G = (VG; EG; 
G; lG; attrG), where (VG; EG; 
G; lG)is a labelled hypergraph and attrG : EG ! AS is a fun
tion su
h that for ea
he 2 EG it holds that attrG(e) 2 Altype(lG(e)).We 
onsider nodes of a hypergraph as unlabelled (and without attributes).Attributes 
an be added by providing nodes with unary hyperedges whi
h 
on-tain the attribute for that node.



De�nition 6 (hypergraph morphisms). Let G1; G2 be two hypergraphs. A(hypergraph) morphism ' : G1 ! G2 
onsists of two total fun
tions 'V : VG1 !VG2 and 'E : EG1 ! EG2 su
h that for every e 2 EG1 it holds that lG1(e) =lG2('E(e)) and 'V (
G1(e)) = 
G2('E(e)). A morphism is 
alled edge-bije
tive( edge-inje
tive) whenever it is bije
tive (inje
tive) on edges. (We will in thefollowing drop the subs
ripts V and E.)De�nition 7 (morphisms of attributed hypergraphs). Let G1; G2 be twoattributed hypergraphs (where G1 is attributed over A and G2 over B). An at-tributed hypergraph morphism ' = ( ; h) : G1 ! G2 
onsists of a hypergraphmorphism  and an algebra homomorphism h : A ! B su
h that8e 2 EG1 : attrG2( (e)) = h(attrG1(e)):2.3 Rewriting of Attributed GraphsAttributed hypergraphs 
an be transformed using rewriting rules whi
h we de�nein the following. Our approa
h follows essentially the presentation in [18℄, butwithout using 
ategory theory. Furthermore we use the same restri
tions on rulesas in [3℄ sin
e this greatly simpli�es veri�
ation.De�nition 8 (attributed rewriting rule). We �x a signature � and a set Xof variables. An attributed rewriting rule r is a quadruple (L;R; �; g), where Land R are T (�;X)-attributed hypergraphs, 
alled left-hand side and right-handside respe
tively, � : VL ! VR is an inje
tive mapping, indi
ating how nodes arepreserved, and g 2 T (�;X) is a guard 
ondition of sort Bool .We demand that ea
h of the term attributes of L is a single variable of X(su
h that ea
h variable appears only on
e). The set of all variables in the left-hand side is denoted by X 0. The right-hand side R may be attributed with ar-bitrary terms from T (�;X 0). Ea
h rule r is asso
iated with a guard expressiong(r) 2 T (�;X 0)Bool .We demand also that there are no isolated nodes in the left-hand side L andno isolated nodes in VR � �(VL). Additionally EL must not be empty and there
an not be two edges with the same label in the left-hand side of a rule.If an instan
e of the left-hand side is found in the 
urrent state of the system,then this rule 
an be applied and the instan
e of the left-hand side of the rulewill be repla
ed by its right-hand side. We are now ready to de�ne the notion ofattributed graph transformation systems.De�nition 9 (attributed graph transformation system (AGTS)). Anattributed graph transformation system (AGTS) G = (R; G0) over an algebra Ais a �nite set of attributed rewriting rules R together with an A-attributed starthypergraph G0 (also 
alled initial graph).We now des
ribe in a set-based notation how rules 
an be applied to at-tributed graphs. This 
ould also be done 
ategori
ally.



De�nition 10 (rule appli
ation). A mat
h of a rewriting rule r = (L;R; �; g)in an A-attributed graph G is a morphism  = ('; h) : L! G whi
h is inje
tiveon edges. We 
an apply r to a mat
h in G obtaining a new graph H, writtenG r) H, whenever the guard expression is satis�ed, i.e., h(g) 2 TA. The targetgraph H is de�ned as followsVH = VG ℄ (VR � �(VL)) EH = (EG � '(EL)) ℄ ERand, de�ning ' : VR ! VH by '(�(v)) = '(v) if v 2 VL and '(v) = v otherwise,the sour
e, target, labelling and attribute fun
tions are given bye 2 EG � '(EL) ) 
H(e) = 
G(e); lH(e) = lG(e); attrH(e) = attrG(e)e 2 ER ) 
H(e) = '(
R(e)); lH(e) = lR(e); attrH(e) = h(attrR(e))That is, a left-hand side is found and repla
ed by the 
orresponding right-hand side. We use a restri
ted version of the DPO (double-pushout) approa
hwhere we only allow dis
rete interfa
es. Merging as well as deletion of nodes isforbidden. Edges, however, 
an be deleted. The new attributes in the right-handside are obtained by using h, the binding of the set of free variables X 0 of theleft-hand side.2Example 2. We use the simple AGTS shown in Fig. 1 as a running example.Edges labelled B and C have integer attributes. The attribute in B is in
reasedby one whenever a new edge is 
reated, whereas the attribute in C is multipliedwith the 
orresponding attribute in B when C 
rosses B. The edges A and Errorhave no attributes. The property we want to verify is that no Error edge willever be 
reated. Note that intuitively this holds sin
e no edge labelled 7 will everbe 
reated and hen
e rule \Cross Ba
kward" will never be applied, sin
e C willalways 
ontain a even attribute value.3 Approximation of AttributesIn Example 1 we 
onsidered an algebra with in�nite 
arrier sets. In order toanalyse the systems thus obtained we need a me
hanism of attribute approxi-mation. Hen
e we work in the framework of abstra
t interpretation [5℄ and startwith the notion of a Galois 
onne
tion, whi
h is basi
ally a pair of adjoints.De�nition 11 (Galois 
onne
tion on algebras). Let � = hS;Fi be a sig-nature and let A, B be two algebras over this signature, where ea
h 
arrier setis latti
e-ordered via v.32 Note that in the 
ase of a powerset algebra some elimination of over-approximation
ould be useful, by removing attribute values in the right-hand side that did notsatisfy the guard expression. In order to be able to represent the theory in a 
ompa
tway we 
hoose not to follow this path at the moment.3 The partial order v stands for the information ordering. Intuitively whenever a v b,then a is 
onsidered to be more exa
t, i.e., a 
onveys more information about thesystem state.
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Fig. 1. Example of an attributed graph transformation systemA family of fun
tions (�s : As ! Bs, 
s : Bs ! As)s2S is 
alled Galois
onne
tion on algebras if they are monotone with respe
t to v and if for alls 2 S: 8a 2 As : a v 
s(�s(a)) and 8b 2 Bs : �s(
s(b)) v b.Finally we require that for ea
h fun
tion symbol f with �(f) = (s1 : : : sn; s)the fun
tion fB is a safe over-approximation of fA, i.e., for all a1; : : : ; an withai 2 Asi it holds that: �s(fA(a1; : : : ; an)) v fB(�s1(a1); : : : ; �sn(an)). Notethat this 
ondition says that � is an algebra homomorphism \up to" v. Su
hmappings will also be 
alled v-homomorphisms.Furthermore if A, B are Boolean algebras we require that both use the same
arrier set for Bool , that �Bool ; 
Bool are identities, TA = TB, FA = FB andthat furthermore truth values respe
t the information ordering v in the followingsense: 8v; v0 : (v0 v v ^ v0 2 TA ) v 2 TA) (and similarly for FA).Example 3. The algebra C that is used by our implementation allows severalpossible abstra
tions via algebras with �nite 
arrier sets, some of whi
h arealready prede�ned. For instan
e, for the integers we use modulo abstra
tionmodulo base b (ea
h integer k is abstra
ted by (kmod b)) and interval abstra
tionwith boundariesm;n (k is abstra
ted by one of \< �m",�m; : : : ; n�1; n,\> n").We also de�ned suitable operators on the abstra
t values whi
h safely over-approximate the original fun
tions in the sense of De�nition 11.However, we 
an not use dire
tly the algebra C for a Galois abstra
tion sin
eit is not latti
e-ordered. Hen
e we work with P(C) where the latti
e-order is setin
lusion. Then every set of 
on
rete values is mapped to set of abstra
t valuesvia �s, whereas 
s is the 
orresponding 
on
retization.



4 Analysis of Attributed Graph Transformation SystemsSin
e GTSs are in general Turing-powerful, over-approximation te
hniques areneeded for their analysis. In our 
ase we abstra
t AGTSs by 
oloured Petrinets, whi
h are a 
on
eptually simpler formalism whi
h is easier to analyse. In[3℄ an approximated unfolding te
hnique for GTSs was presented, in whi
h|
ompared to standard unfolding te
hniques|additional folding steps are used,whi
h over-approximate but guarantee a �nite approximation. The resultingover-approximation is a so-
alled Petri graph whi
h is a Petri net with an addi-tional hypergraph stru
ture, i.e., the hyperedges are at the same time the pla
esof the net. Our idea here is to 
onstru
t an attributed Petri graph whi
h over-approximates an AGTS: an attributed Petri graph 
onsists of an attributed (or
oloured) Petri net and a hypergraph stru
ture over it. Our notation is orientedon 
oloured Petri nets [12℄ and algebrai
 high-level nets [8℄.4.1 Attributed Petri graphsWe now formally de�ne attributed Petri nets and attributed Petri graphs. We
onsider a �xed set of labels � and a fun
tion ltype : �! S.By A� we denote the free 
ommutative monoid overA with monoid operation�, whose elements are also 
alled multisets. A multiset M 2 A� 
an be writtenas a formal sum M = La2Ama � a and given M we write M(a) to denotethe 
oeÆ
ient ma. A fun
tion f : A ! B 
an be extended to a fun
tion f :A� ! B� on multisets as follows: For M 2 A� we de�ne M 0 = f(M) withM 0(b) = Pa2f�1(b)M(a) for every b 2 B. Besides � we also use di�eren
eM 	M 0, where M;M 0 2 A� and in
lusion, de�ned by M � M 0, when thereexists M 00 2 A� su
h that M �M 00 =M 0We will now introdu
e attributed Petri nets whi
h imitate 
oloured nets [12℄in their graphi
al representation, and whi
h are basi
ally algebrai
 high-level nets[8℄ with small variations. For instan
e, 
ompared to [8℄, we only allow variables,but not arbitrary terms in the preset of a transition.De�nition 12 (attributed Petri net). Let A be a �-algebra. An A-attributedPetri net is a tuple N = (S; T; l; �(); ()�; guard ;m0), where S is a set of pla
es,T is a set of transitions, l : S ! � is a labelling fun
tion, �(); ()� : T !(S ! (T (�;X)S)�) are pre- and postset fun
tions, guard : T ! T (�;X)Boolis a guard fun
tion, and m0 is the initial marking of the net. A marking of anattributed Petri net is a fun
tion m : S ! A�S . We also require that:(1) Ea
h element of the multisets �t(s), t�(s) and m(s) is of sort ltype(l(s)).(2) The multiset Ls2S �t(s) = X 0 
ontains only variables, ea
h with multipli
-ity 1. Furthermore, the elements of t�(s) are 
ontained in T (�;X 0) andguard(t) 2 T (�;X 0)Bool .Elements of m(s) (whi
h are elements of the 
arrier sets) are also 
alledtokens. For a marking m de�ne jmj : S ! N as jmj(s) = jm(s)j, i.e., ea
h pla
eis asso
iated with the number of tokens it 
ontains.



A transition t is enabled for the marking m if there exists a binding h :T (�;X) ! AS su
h that h(guard(t)) 2 TA and for ea
h pla
e s it holds thatm(s) � h(�t(s)). An enabled transition with a given binding h 
an be �red andthe marking m of the net will be transformed into m0, denoted by m [t; him0:m0(s) = m(s)	 h(�t(s))� h(t�(s)):We 
onsider a Petri graph as 
onsisting of an attributed Petri net and anon-attributed hypergraph stru
ture over it.De�nition 13 (attributed Petri graph). Let G = (R; G0) be an AGTS. AnA-attributed Petri graph (over R) is a tuple P = (G;N ; pN ; �), where G is a(non-attributed) hypergraph, N is an A-attributed Petri net where the pla
es arethe edges of G, pN asso
iates to ea
h transition t a rule pN(t) = (L;R; �; g) 2 Rsu
h that guardP (t) = g and � asso
iates to ea
h transition t from N with pN(t)as above a (non-attributed) hypergraph morphism �(t) : L [ R ! G su
h that�t(s) =L�(t)(e)=s;e2EL attrL(e) and t�(s) =L�(t)(e)=s;e2ER attrR(e).An attributed Petri graph for G is a pair (P; �), where P = (G;N; pN ; �) isan attributed Petri graph over R and � : G0 ! G is a (non-attributed) graphmorphism su
h that m0(s) =L�(e)=s attrG0(e) for ea
h edge e 2 EG0 .Note that the edges of the graph are at the same time the pla
es of the netand that the transitions are labelled with rules of the AGTS.For ea
h marking m of an attributed Petri graph we de�ne an attributedgraph graph(m) as follows: �rst we take the subgraph G0 of G with edge setE0 = fe j m(e) 6= ;g and with all nodes adja
ent to some edge in E0. Assumethat m(e) =Lki=1 ai is the marking of e 2 E0. Now we repla
e in G0 ea
h e byk edges e1; : : : ; ek with lG(ei) = lG(e), 
G(ei) = 
G(e) and attrG(ei) = ai.4.2 Approximated UnfoldingWe now des
ribe how to obtain an attributed Petri graph from a given AGTS.First, we unfold the underlying GTS in an approximative way as it is des
ribedin [3℄ without taking attributes into 
onsideration. This is done by starting withthe initial graph and applying unfolding steps that \simulate" rule appli
ationsby adding transitions, as well as folding steps that merge left-hand sides whi
hare 
ausally dependent. Sin
e the approximated unfolding pro
edure supplies uswith morphisms � and �(t) as des
ribed in De�nition 13 there is a unique wayof adding attributes to the Petri graph after the approximated unfolding. Thismeans that attributes do not a�e
t the unfolding pro
edure itself in any way.Still, it is ne
essary to show that the resulting Petri graph is a valid over-approximation.Proposition 1. Let P be an attributed Petri graph for a GTS G obtained asdes
ribed above. Then, there exists a simulation relation4 R between the rea
h-able graphs in G and the rea
hable markings in P su
h that: (G0;m0) 2 R and4 In the simulation game every appli
ation of a rule r must be answered by a transitionlabelled r.



for every pair (G;m) there exists an edge-bije
tive attributed hypergraph mor-phism (with the identity as algebra homomorphism) G! graph(m). Spe
i�
allythis means that every graph rea
hable in G is over-approximated by a rea
hablemarking of P .We extended Augur 2 [15℄ to 
onstru
t and analyse over-approximations ofAGTSs. Fig. 2 depi
ts the 
oarsest over-approximation for the AGTS in Fig. 1
omputed by Augur 2. Pla
es, whi
h 
oin
ide with the edges, are depi
ted asboxes with rounded 
orners, with 
ir
le-shaped tokens inside. Transitions arerepresented by thin bla
k re
tangles with guard 
onditions and preset/postsetannotations. For instan
e 10x on an ar
 leaving a pla
e means that one token isremoved and its value bound to x. Note that the over-approximation below istoo 
oarse sin
e the error edge 
an be 
overed. Hen
e abstra
tion re�nement isne
essary.
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ally 
oloured Petri nets [12℄ and 
an beanalyzed with te
hniques developed for su
h nets. In parti
ular we want to 
he
kthat 
ertain edges (or pla
es), 
alled error edges, 
an not be 
overed. Due toProposition 1 we 
an infer that if this holds for the approximation, it is alsotrue for the original system. However, we still have to handle in�nite 
arriersets, whi
h is done by attribute abstra
tion. We show here that if the attributesare 
orre
tly abstra
ted, then the abstra
t version of a Petri graph 
orre
tlyover-approximates the 
on
rete version.In the following we assume that AGTSs are attributed over an algebra A,whi
h will be abstra
ted by an algebra B via a Galois 
onne
tion (�s; 
s) (seeDe�nition 11). If we take a Petri graph P attributed over A this 
an be easilyseen as a Petri graph attributed over B by applying �s to all elements of the



initial marking. The (abstra
t) Petri graph obtained in this way is denotedby P a.The following proposition shows how the abstra
t Petri graph P a 
an beused in order to analyse P . But let us �rst �x some notation: For two multisetsM1;M2 we write M1 v M2 if there is a bije
tion from M1 to M2 su
h thatea
h element of M1 is smaller than or equal to its image in M2 (with respe
tto the information ordering v). For two markings we write m̂1 v m̂2 wheneverm̂1(s) v m̂2(s) for ea
h pla
e s.Proposition 2. For the attributed Petri graphs P and P a it holds that there isa simulation relation R on the rea
hable markings su
h that (m0;ma0) 2 R andfor ea
h pair (m; m̂) 2 R we have ma v m̂.To analyse attributed Petri graphs we need to 
he
k whether 
ertain markingsor pla
es 
an be 
overed by a rea
hable marking. Hen
e we adapted two su
hte
hniques, 
overability graphs [19℄ and ba
kward rea
hability [1℄, to attributedPetri graphs with �nite 
arrier sets and implemented them in Augur 2. Wealso extended both methods to provide us with a tra
e (= 
ounterexample) toa given 
overable marking.4.4 Abstra
tion Re�nementThis se
tion generalizes the abstra
tion re�nement te
hnique from [14℄. We adaptthe te
hnique of abstra
tion re�nement for AGTS and attributed Petri graphs. Ifthe analysis of the Petri net gives us a spurious 
ounterexample for the propertyto verify then we 
an try to eliminate it using 
ounterexample-guided abstra
tionre�nement [14℄. In our 
ase there are two possible ways to re�ne the obtainedover-approximation: either we 
an re�ne the graph stru
ture of the obtainedover-approximation or the attribute abstra
tion. One of the 
hallenges is todetermine whi
h of the two 
ases applies.First we de�ne a notion of (abstra
t) runs and their 
orresponden
e.De�nition 14 (abstra
t run of an AGTS). An abstra
t run of an AGTS(R; G0) is a sequen
e of attributed hypergraphs J = (J0 )r1 J1 )r2 � � � )rnJn), where ri is a rule name, together with (attributed) morphisms 'i : Li+1 ! Jifor ea
h i = 1; : : : ; n�1, where Li is the left-hand side of rule ri 2 R.Note that we do not demand that Ji 
an be derived from Ji�1 by applyingrule ri at mat
h 'i (hen
e the name abstra
t). If an abstra
t run is derivableit will be 
alled a real run. The j-th pre�x of J is the run pr j(J ) = (J0 )r1J1 )r2 � � � )rj Jj) together with the morphisms 'i.Let J 0 = (J 00 )r1 J 01 )r2 : : : )rn J 0n) be another abstra
t run with mor-phisms '0i : Li+1 ! J 0i for ea
h i = 1; : : : ; n�1. We say that J 0 weakly 
or-responds to J (in symbols J 0 � J ) if for ea
h i = 1; : : : ; n�1 there existedge-bije
tive (attributed) morphisms �i : J 0i ! Ji for i = 0; : : : ; n. If further-more the following diagram 
ommutes we say that J 0 
orresponds to J and write



J 0n J . Li+1 '0i //'i 77J 0i �i // JiIn both 
ases, we require that the attributed morphisms are equipped with iden-tity homomorphisms. If they have only v-homomorphisms (as de�ned in De�ni-tion 11) we talk about (weak) v-
orresponden
e and write �v andnv.For later use we need following 
onstru
tion (
f. [14℄): Let G be a hypergraphand m a marking of the underlying Petri net, spe
i�
ally m 2 E�G . That is, thereexists a (non-attributed) morphism  : graph(m) ! G. Now let ' : G0 ! Gbe a morphism su
h that '�(EG0) � jmj. Then there exists an edge-inje
tivemorphism em;' : G0 ! graph(m) su
h that  Æ em;' = '.We will mainly use this 
onstru
tion for the spe
ial 
ase where ' = �(t)jL :L ! G, i.e., ' is a mat
h of the left-hand side in the Petri graph (see De�ni-tion 13), and m is a marking that allows to �re transition t.Petri graphs 
an, as mentioned above, be seen as symboli
 representations ofgraph transition systems and also as representations of sets of abstra
t runs.De�nition 15 (abstra
t runs of an attributed Petri graph). Let (P; �)with P = (G;N; pN ; �) be an attributed Petri graph for an AGTS (R; G0). Fur-thermore let m0[t1; h1i : : : [tn; hnimn be a �ring sequen
e of the net N and letri = pN (ti) be the rules 
orresponding to the transitions. We 
onsider (non-attributed) morphisms �i+1 = emi;�(ti+1)jLi+1 : Li+1 ! graph(mi), where Li+1is the left-hand side of rule ri+1 and extend them in the 
anoni
al way toattributed morphisms by adding bindings. It is easy to see that the sequen
egraph(m0))r1 graph(m1))r2 : : :)rn graph(mn) together with the morphisms'i = (�i; hi) is an abstra
t run.Ea
h real run JR = (G0 )r1 G1 )r2 : : : )rn Gn) of the AGTS (R; G0)
an be 
onsidered as an abstra
t run where the 'i : Li+1 ! Gi represent themat
hes of the left-hand sides of the rules ri.Now let G be an AGTS, let P be an attributed Petri graph approximat-ing G and let P a be the abstra
t Petri graph derived from P . That is, Pover-approximates the (graph) stru
ture, whereas P a additionally abstra
ts at-tributes.Then, for every real run JR of G there exists an abstra
t run JA of P , su
hthat JR n JA. And furthermore for every abstra
t run JA of P there existsan abstra
t run ĴA of P a su
h that JAnv ĴA. This is a dire
t 
onsequen
eof the simulation property (see Propositions 1 and 2). Sin
e 
orresponden
e istransitive this means that every real run JR of G 
an be asso
iated with anabstra
t run ĴA of P a su
h that JRnv ĴA.We start abstra
tion re�nement with an attributed Petri graph Pa whi
h isobtained by unfolding an AGTS G and interpreting the resulting Petri graphin B (as des
ribed in the previous se
tion). If the property we want to verify isviolated, we obtain a 
ounterexample of the following form:



m̂0[t1; ĥ1i : : : [tn; ĥnim̂n;where the ti are transitions and the ĥi are the 
orresponding bindings. Usuallythe AGTSs that we 
onsider have an error rule and the property we want toverify is that this rule is not appli
able. Hen
e an error tra
e in
ludes a �ring ofthe 
orresponding error transition as the last step. It 
an be seen as an abstra
trun (with abstra
ted attributes) of the following form:ĴA = (graph(m̂0))r1 graph(m̂1))r2 : : :)rn graph(m̂n));where rj = pN (tj) and (�j ; ĥj) : Lj ! graph(m̂j�1) are the 
orrespondingmorphisms from the left-hand side of rj to graph(m̂j�1) for j = 1; : : : ; n.After analysing the Petri graph P a and sear
hing for 
ounterexamples there
ould be the following four possibilities:(1) The property is su

essfully veri�ed, i.e., no 
ounterexample was found in P a.(2) A real (non-spurious) 
ounterexample ĴA is found. That is, we have JRnvĴA for a real run JR of G. In this 
ase we have found an error.(3) The dete
ted 
ounterexample is spurious. This means that no real run JRwith JRnv ĴA exists. However, there 
ould be real runs J 0R shorter than ĴAthat 
orrespond to a pre�x pr i(ĴA) of the 
ounterexample, i.e., J 0Rnv pr i(ĴA).Let k be the maximal length of su
h a run. The set of all su
h maximal real runs(there 
ould be several of them) is denoted by H.For a given J 0R 2 H there always exists a (unique) run J 0A of the at-tributed Petri graph P (with 
on
rete attributes) with morphisms (�j ; hj) :Lj ! graph(mj�1) (morphisms �j as above) su
h that J 0Rn J 0A (see Fig. 3).It is easy to see that also J 0Anv pr i(ĴA).
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Fig. 3. Counterexample (abstra
t and real runs with 
orresponding left-hand sides)We now distinguish the following two 
ases:(3a) We say that the over-approximation is stru
turally too 
oarse if for someJ 0R 2 H the 
orresponding run J 0A 
an be extended to a run J 00A of length



k + 1 with a morphism (�k+1; hk+1) : Lk+1 ! graph(mk) in su
h a way thatJ 00A nv prk+1(ĴA). The set of su
h pre�xes of H is denoted by HS . Belowwe des
ribe a te
hnique based on the one proposed in [14℄ whi
h allows us toeliminate the obtained 
ounterexample in this 
ase.(3b) In the last 
ase for ea
h run J 0R 2 H su
h that J 0R nv prk(ĴA), the
orresponding run J 0A 
an not be extended as in the previous 
ase, i.e.,HS = ;. Ifthis holds then we say that in the over-approximationP a the attribute abstra
tionis too 
oarse.In the �rst two 
ases we have solved the problem either with a positive or anegative out
ome. If the obtained over-approximation is stru
turally too 
oarse(
ase (3a)) and does not allow us to verify the property, a 
ounterexample-guidedabstra
tion re�nement te
hnique [14℄ for re�ning the approximation is available.It uses the set HS of pre�xes of the 
ounterexample and re�nes the stru
tureof the Petri graph. This is done by identifying whi
h nodes have previouslybeen merged or folded erroneously and by restarting the approximated unfold-ing from s
rat
h, but making sure that those node are now kept separate. Thete
hnique des
ribed in [14℄ for non-attributed GTSs 
an be applied here withoutmodi�
ation. As in [14℄, we will eliminate not only the spurious run ĴA but allother abstra
t runs 
orresponding to it and at the same time having a weak
orresponden
e to some run in HS .Proposition 3. The stru
turally re�ned Petri graph P 0a 
onstru
ted above doesnot 
ontain any run Ĵ 0A whi
h v-
orresponds to the spurious run ĴA of P a andhas a weak v-
orresponden
e to some run in HS . Furthermore if P 0a 
ontainsa spurious run Ĵ 0A, then it v-
orresponds to some run ĴA in P a.To re�ne the approximation in the last 
ase we make our abstra
tion of at-tributes more exa
t in a prede�ned way. For example for the modulo abstra
tionwe 
an in
rease the modulo base b (we usually multiply it by two), and for theinterval abstra
tion we 
an in
rease the interval bounds m and/or n. However inthis 
ase we have no guarantee that the spurious 
ounterexample will be elim-inated. In the implementation the attribute abstra
tion is re�ned a prede�nednumber of times and if spurious 
ounterexample are then still reprodu
ible, weterminate with the answer \don't know". Future work is the integration of thepredi
ate abstra
tion whi
h will be dis
ussed in the 
on
lusion.So our results for the re�nement of attribute abstra
tion are weaker than inthe 
ase of stru
ture re�nement. But we 
an still show that whenever we re�nethe attribute abstra
tion in a 
ertain way, no new spurious runs will appear.Proposition 4. Let (�s : As ! Bs, 
s : Bs ! As)s2S be the Galois 
onne
tionbetween algebras A, B whi
h was originally used for attribute abstra
tion. Nowlet (�0s : As ! Ds, 
0s : Ds ! As)s2S be a new 
onne
tion from A to D.We furthermore assume that there exists a Galois 
onne
tion from D to Bwith mappings �00s , 
00s su
h that �s w �00s Æ�0s. Then if the re�ned Petri graph P 0a
ontains a run Ĵ 0A , it v-
orresponds (with �00s as v-homomorphisms) to somerun ĴA in P a. In parti
ular, if Ĵ 0A leads to a marking 
overing an error edge,then the same is true for ĴA.



We 
an iterate abstra
tion re�nement by storing an arbitrary number ofspurious 
ounterexamples. Naturally, due to unde
idability and the fa
t thatAGTSs are in general Turing-
omplete, there is no guarantee that this loop willever terminate.Example 4. Let us now 
onsider the Petri graph in Fig. 2 using a modulo ab-stra
tion with base one (unit abstra
tion). The edge labelled Error of the Petrigraph 
an be 
overed by �ring transition \Error". This means that either theproperty does not hold or the over-approximation is too 
oarse. In this 
ase one
an show that the run is spurious, i.e., it has no 
ounterpart in the originalAGTS and the over-approximation is stru
turally too 
oarse (
ase (3a)). Apply-ing abstra
tion re�nement gives us a re�ned Petri graph (whi
h is not depi
tedhere due to spa
e 
onstraints).Now an error edge is still in the approximation and a 
ounterexample 
an be
onstru
ted (via rules \Cross Ba
kward", \Error"). However, this 
ounterexam-ple 
an not be reprodu
ed without attribute approximation, whi
h means thatthe abstra
tion is too 
oarse and should be re�ned (
ase (3b)). By using basetwo in the modulo abstra
tion we obtain a Petri graph in whi
h the Error-edgeis no longer 
overable, whi
h means su

essful veri�
ation.5 Example: Leader Ele
tionIn this se
tion we sket
h the modelling and veri�
ation of a leader ele
tionproto
ol in a ring ar
hite
ture with AGTSs. The purpose of the proto
ol is toele
t a unique leader among the stations in a ring-shaped network.The algorithm uses only lo
al 
ommuni
ation and does not depend on the sizeof the ring. The leader is 
hosen on the basis of the unique ids of the stations andwill eventually be the station with the smallest id (in our 
ase: id 1). Ea
h stationsends a message with its id around the ring. Upon re
eption of the message fromits prede
essor a station 
ompares the re
eived id with its own id and, if thein
oming id is smaller than its own, forwards the message. If the id is larger,then the message is dis
arded. If a station re
eives its own id, then it de
laresitself the leader. The proto
ol is parametrized in the sense that we 
an 
reaterings of arbitrary size with a potentially in�nite number of stations. We wantto show that we never 
hoose the wrong leader, i.e., there is never a situationwhere we have a station that has a smaller id than the 
urrent leader.Con
erning the ids we use interval abstra
tion with start interval [0; 1℄. Afterunfolding the AGTS and analysing it via the 
overability te
hnique we obtain aspurious 
ounterexample. Afterwards three iterations of abstra
tion re�nement
an be applied: two with stru
tural re�nement and one with attribute abstra
tionin the interval [0; 2℄. The 
overability 
he
k then shows that we have su

essfullyveri�ed the proto
ol. The whole veri�
ation pro
edure for the leader ele
tionproto
ol took 48:15 se
onds.5 More details on this 
ase study will be reportedin [17℄.5 All experiments were made using Augur 2 [15℄ written in C++ under Linux andthe 
omputer parameters are 2*Genuine Intel(R) 1:66 GHz with 2:0 GB RAM.



6 Con
lusionWe have presented a framework for the veri�
ation of attributed graph trans-formation systems, using approximated unfoldings, attribute abstra
tion and a
ounterexample-guided abstra
tion re�nement te
hnique.There are some related approa
hes to the veri�
ation of graph transformationsystems in the literature, see for instan
e [20, 21, 6, 4℄. However, there seems tobe only a small amount of work on the veri�
ation and over-approximation ofattributed graph transformation systems. We are 
urrently aware of attributesin the tool Groove [13℄ for the veri�
ation of �nite-state graph transformationsystems. Furthermore AGTSs 
ould be transformed into the input language ofmore 
onventional model 
he
kers that do support attributes.This 
ombination is 
learly of pra
ti
al interest and also raises interestingmethodologi
al questions. As we have shown the 
ombination of stru
tural re-�nements and re�nements of attribute abstra
tions is non-trivial.Currently we handle the re�nement of attribute abstra
tion semi-automat-i
ally, by leaving the 
hoi
e mainly to the user. Clearly this is not 
ompletelysatisfa
tory. A natural question to ask is whether the 
ounterexample-guidedabstra
tion re�nement approa
h based on predi
ate abstra
tion and Craig inter-polation [10, 11℄ 
an be adapted to our setting. In this approa
h the abstra
tionis re�ned by generating new predi
ates over the program variables, based onthe 
ounterexample. In our setting the diÆ
ulty is not so mu
h how to generatethese predi
ates (after all, we have a spe
i�
 
ounterexample) but how to inter-pret them over the markings of the Petri net. The situation would be easy if allpredi
ates were unary, sin
e in this 
ase we would employ the 
on
ept of Galois
onne
tions introdu
ed in this arti
le. However generated predi
ates typi
allyhave a higher arity, often predi
ates are binary predi
ates of the form x < y. Forthe original predi
ate abstra
tion approa
h this is not a problem sin
e there areonly �nitely many variables and the value of predi
ates for an abstra
t state 
anbe des
ribed in a �nite way. However in our 
ase there 
an be arbitrarily manytokens and it is not 
lear to us how to solve the 
overability problem for Petrinets with su
h an abstra
tion me
hanism.In addition we need more (and larger) 
ase studies in order to test our te
h-niques. Currently we are working on the veri�
ation of variants of the Needham-S
hroeder proto
ol a 
ryptographi
 proto
ol used for authenti
ation (see [17℄).Referen
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