
Towards the Veri�ation ofAttributed Graph Transformation Systems?Barbara K�onig and Vitali KoziouraAbteilung f�ur Informatik und Angewandte KognitionswissenshaftUniversit�at Duisburg-Essen, GermanyAbstrat. We desribe an approah for the veri�ation of attributedgraph transformation systems (AGTS). AGTSs are graph transforma-tion systems where graphs are labelled over an algebra. We base our ver-i�ation proedure on so-alled approximated unfoldings ombined withounterexample-guided abstration re�nement. Both tehniques wereoriginally developed for non-attributed systems. With respet to re�ne-ment we fous espeially on deteting whether the spurious ounterex-ample is aused by strutural over-approximation or by an abstrationof the attributes whih is too oarse. The tehnique is implemented inthe veri�ation tool Augur 2 and a leader eletion protool has beensuessfully veri�ed.1 IntrodutionFor pratial purposes modelling languages are usually extended with the possi-bility of adding data types and suitable operations. This is for instane done inoloured Petri nets [12℄ and attributed graph transformation systems (AGTSs)[18, 9℄. Extending a GTS with attributes allows one to ombine the intuitivegraphial aspets of the modelled systems with the natural data strutures,whih makes suh extended GTSs more suitable for pratial appliations. Insome ases attributes an be simulated arti�ially by enoding them into thegraph struture (sine GTSs are Turing-omplete), but speifying attributes di-retly leads to more ompat models. This is an advantage with respet to over-approximation tehniques sine we have more ontrol over what is abstratedand in what way it is abstrated.In the last years we have developed a veri�ation tehnique for non-attributedgraph transformation systems (GTSs) [3℄, whih allowed us to suessfully verifyseveral ase studies [7, 2, 16℄. The tehnique approximates GTSs by Petri graphs(whih are Petri nets with additional hypergraph struture) and re�nes the ob-tained Petri graph via ounterexample-guided abstration re�nement (CEGAR)when neessary [14℄. CEGAR is a standard program analysis tehnique whih re-�nes overly oarse approximations by looking for a spurious run, i.e., a run whihviolates the property to be veri�ed, but whih has no ounterpart in the originalsystem. Then the approximation is re�ned in suh a way that the spurious run? Supported by the DFG projet SANDS and CRUI/DAAD Vigoni \Models basedon Graph Transformation Systems: Analysis and Veri�ation".

disappears. This proedure an be repeated, but due to the undeidability of theveri�ation problem it is not guaranteed that it will eventually give a de�nitiveyes/no-answer.In this paper we apply this tehnique, inluding abstration re�nement, toAGTSs. We desribe our view on AGTSs as graph transformation systems la-belled over an algebra and approximate AGTSs by attributed Petri graphs whihare basially oloured Petri nets [12℄ or algebrai high-level nets [8℄ equipped witha hypergraph struture. After performing the approximation desribed in [3℄ at-tributes are added to the resulting Petri graph, whih an then be analyzed as aoloured Petri net. Sine the arrier sets underlying data types are often in�nite,we additionally need attribute abstration, whih is standard in the frameworkof abstrat interpretation [5℄. In the onlusion we will disuss how the approahmight be extended to prediate abstration [10, 11℄. The veri�ation tehniquefor AGTSs presented here was implemented in Augur 21 [15℄ and we introduea ase study onerning a leader eletion protool and desribe how it has beenveri�ed with Augur 2.2 Attributed Graph Transformation Systems2.1 AlgebrasIn this setion we desribe attributed graph transformation systems (AGTSs).After introduing the (standard) notion of algebra and the (non-standard) notionof Boolean algebra, we show how to de�ne and rewrite attributed graphs.De�nition 1 (signature, algebra). A signature � is a pair hS;Fi where Sis a set of sorts and F is a set of funtion symbols equipped with a mapping� : F ! S� � S. Sorts will also be alled types.A �-algebra A onsists of arrier sets (As)s2S for eah sort and a funtionfA : As1�� � ��Asn ! As for every funtion symbol f with �(f) = (s1 : : : sn; s).For a Boolean �-algebra we require that S ontains the sort Bool and thatwe have two subsets TA; FA � ABool representing the truth values.By T (�;X) we denote the usual �-term algebra, where X is a set of vari-ables, eah equipped with a �xed sort.For an algebra A we denote by AS the set AS = Us2S As, i.e., the union ofall arrier sets (under the impliit assumption that they are all disjoint).Example 1. In our implementation we use an algebra denoted by C with sortsBool ; Int ;Str ;Unit (whih have as arrier sets the standard truth values, inte-gers, strings and one-element set respetively) and tuples over the �rst threesorts. We onsider standard operations, for instane +;�; �; = for the integersand omparison operators <;�;= in order to obtain truth values. Operators analso be extended to funtions operating on tuples.We will now de�ne a spei� type of algebra needed in the following.1 The tool is available at http://www.ti.inf.uni-due.de/researh/augur/.

De�nition 2 (powerset algebra). For a given �-algebra A we will denoteby P(A) its powerset algebra whih is an algebra over the same signature. Thearrier sets of P(A) are the powersets of the original arrier sets, i.e., P(A)s =P(As) and funtion symbols f with F(f) = (s1 : : : sn; s) are interpreted as:fP(A)(A1; : : : ; An) = ffA(a1; : : : ; an) j ai 2 Aig;where Ai 2 (P(A))si . In the ase of a Boolean algebra we set TP(A) = fA0 �ABool j A0 \ TA 6= ;g and similarly for FP(A).Note that in the ase of our example algebra C we have four truth valuesin P(C) where TP(C) = fftrueg; ftrue; falsegg, FP(C) = fffalseg; ftrue; falsegg.Going to powersets is a neessary step sine the onretization of abstrat values,whih will be introdued later, provides us with an entire set of values, as opposedto a single value. However if we only work with single values, i.e., one-elementsets, we will get exatly the same results as in the original algebra.Finally we need a notion of algebra homomorphism.De�nition 3 (algebra homomorphism). Let A;B be two �-algebras. An al-gebra homomorphism h : A ! B is a family of maps (hs : As ! Bs)s2S suhthat for eah f 2 F with �(f) = (s1 : : : sn; sn+1) we havehsn+1(fA(a1; : : : ; an)) = fB(hs1(a1); : : : ; hsn(an)):2.2 Attributed GraphsWe will now de�ne the notion of graphs we are working with. We onsider a�xed set of labels � and we start with the de�nition of hypergraphs and theirmorphisms.De�nition 4 (hypergraph). A hypergraph G is a tuple (VG; EG; G; lG), whereVG is a �nite set of nodes, EG is a �nite set of edges, G : EG ! V �G is a on-netion funtion, and lG : EG ! � is the labeling funtion.We onsider a �xed typing funtion ltype : �! S whih assoiates a sort toeah label. The theory ould be easily extended to assoiating several (named)attributes to eah label and this is how it is handled in our implementation.We are now ready to introdue attributed hypergraphs. Note that here wehoose a di�erent representation of attributed graphs than in [9℄ where the fousis on viewing attributed graphs in the framework of adhesive HLR ategoriesand where graphs inlude spei� data nodes. One of our main onerns is tofully separate the graph struture and the attributes for veri�ation purposes.De�nition 5 (attributed hypergraph). Let A be a �-algebra. An A-attrib-uted hypergraph is a tuple G = (VG; EG; G; lG; attrG), where (VG; EG; G; lG)is a labelled hypergraph and attrG : EG ! AS is a funtion suh that for eahe 2 EG it holds that attrG(e) 2 Altype(lG(e)).We onsider nodes of a hypergraph as unlabelled (and without attributes).Attributes an be added by providing nodes with unary hyperedges whih on-tain the attribute for that node.

De�nition 6 (hypergraph morphisms). Let G1; G2 be two hypergraphs. A(hypergraph) morphism ' : G1 ! G2 onsists of two total funtions 'V : VG1 !VG2 and 'E : EG1 ! EG2 suh that for every e 2 EG1 it holds that lG1(e) =lG2('E(e)) and 'V (G1(e)) = G2('E(e)). A morphism is alled edge-bijetive(edge-injetive) whenever it is bijetive (injetive) on edges. (We will in thefollowing drop the subsripts V and E.)De�nition 7 (morphisms of attributed hypergraphs). Let G1; G2 be twoattributed hypergraphs (where G1 is attributed over A and G2 over B). An at-tributed hypergraph morphism ' = (; h) : G1 ! G2 onsists of a hypergraphmorphism and an algebra homomorphism h : A ! B suh that8e 2 EG1 : attrG2((e)) = h(attrG1(e)):2.3 Rewriting of Attributed GraphsAttributed hypergraphs an be transformed using rewriting rules whih we de�nein the following. Our approah follows essentially the presentation in [18℄, butwithout using ategory theory. Furthermore we use the same restritions on rulesas in [3℄ sine this greatly simpli�es veri�ation.De�nition 8 (attributed rewriting rule). We �x a signature � and a set Xof variables. An attributed rewriting rule r is a quadruple (L;R; �; g), where Land R are T (�;X)-attributed hypergraphs, alled left-hand side and right-handside respetively, � : VL ! VR is an injetive mapping, indiating how nodes arepreserved, and g 2 T (�;X) is a guard ondition of sort Bool .We demand that eah of the term attributes of L is a single variable of X(suh that eah variable appears only one). The set of all variables in the left-hand side is denoted by X 0. The right-hand side R may be attributed with ar-bitrary terms from T (�;X 0). Eah rule r is assoiated with a guard expressiong(r) 2 T (�;X 0)Bool .We demand also that there are no isolated nodes in the left-hand side L andno isolated nodes in VR � �(VL). Additionally EL must not be empty and therean not be two edges with the same label in the left-hand side of a rule.If an instane of the left-hand side is found in the urrent state of the system,then this rule an be applied and the instane of the left-hand side of the rulewill be replaed by its right-hand side. We are now ready to de�ne the notion ofattributed graph transformation systems.De�nition 9 (attributed graph transformation system (AGTS)). Anattributed graph transformation system (AGTS) G = (R; G0) over an algebra Ais a �nite set of attributed rewriting rules R together with an A-attributed starthypergraph G0 (also alled initial graph).We now desribe in a set-based notation how rules an be applied to at-tributed graphs. This ould also be done ategorially.

De�nition 10 (rule appliation). A math of a rewriting rule r = (L;R; �; g)in an A-attributed graph G is a morphism = ('; h) : L! G whih is injetiveon edges. We an apply r to a math in G obtaining a new graph H, writtenG r) H, whenever the guard expression is satis�ed, i.e., h(g) 2 TA. The targetgraph H is de�ned as followsVH = VG ℄ (VR � �(VL)) EH = (EG � '(EL)) ℄ ERand, de�ning ' : VR ! VH by '(�(v)) = '(v) if v 2 VL and '(v) = v otherwise,the soure, target, labelling and attribute funtions are given bye 2 EG � '(EL)) H(e) = G(e); lH(e) = lG(e); attrH(e) = attrG(e)e 2 ER) H(e) = '(R(e)); lH(e) = lR(e); attrH(e) = h(attrR(e))That is, a left-hand side is found and replaed by the orresponding right-hand side. We use a restrited version of the DPO (double-pushout) approahwhere we only allow disrete interfaes. Merging as well as deletion of nodes isforbidden. Edges, however, an be deleted. The new attributes in the right-handside are obtained by using h, the binding of the set of free variables X 0 of theleft-hand side.2Example 2. We use the simple AGTS shown in Fig. 1 as a running example.Edges labelled B and C have integer attributes. The attribute in B is inreasedby one whenever a new edge is reated, whereas the attribute in C is multipliedwith the orresponding attribute in B when C rosses B. The edges A and Errorhave no attributes. The property we want to verify is that no Error edge willever be reated. Note that intuitively this holds sine no edge labelled 7 will everbe reated and hene rule \Cross Bakward" will never be applied, sine C willalways ontain a even attribute value.3 Approximation of AttributesIn Example 1 we onsidered an algebra with in�nite arrier sets. In order toanalyse the systems thus obtained we need a mehanism of attribute approxi-mation. Hene we work in the framework of abstrat interpretation [5℄ and startwith the notion of a Galois onnetion, whih is basially a pair of adjoints.De�nition 11 (Galois onnetion on algebras). Let � = hS;Fi be a sig-nature and let A, B be two algebras over this signature, where eah arrier setis lattie-ordered via v.32 Note that in the ase of a powerset algebra some elimination of over-approximationould be useful, by removing attribute values in the right-hand side that did notsatisfy the guard expression. In order to be able to represent the theory in a ompatway we hoose not to follow this path at the moment.3 The partial order v stands for the information ordering. Intuitively whenever a v b,then a is onsidered to be more exat, i.e., a onveys more information about thesystem state.

21 21 21 21

21 21

B

C

B

Initial Graph

C

B B

C

A

C

B B

C

C Error

A

Error

1

x

2

y y

x*y x

y

x

y

x

y
B

Create B

y
B B

y+1

Cross Forward Cross Backward

(x=7)

2

Fig. 1. Example of an attributed graph transformation systemA family of funtions (�s : As ! Bs, s : Bs ! As)s2S is alled Galoisonnetion on algebras if they are monotone with respet to v and if for alls 2 S: 8a 2 As : a v s(�s(a)) and 8b 2 Bs : �s(s(b)) v b.Finally we require that for eah funtion symbol f with �(f) = (s1 : : : sn; s)the funtion fB is a safe over-approximation of fA, i.e., for all a1; : : : ; an withai 2 Asi it holds that: �s(fA(a1; : : : ; an)) v fB(�s1(a1); : : : ; �sn(an)). Notethat this ondition says that � is an algebra homomorphism \up to" v. Suhmappings will also be alled v-homomorphisms.Furthermore if A, B are Boolean algebras we require that both use the samearrier set for Bool , that �Bool ; Bool are identities, TA = TB, FA = FB andthat furthermore truth values respet the information ordering v in the followingsense: 8v; v0 : (v0 v v ^ v0 2 TA) v 2 TA) (and similarly for FA).Example 3. The algebra C that is used by our implementation allows severalpossible abstrations via algebras with �nite arrier sets, some of whih arealready prede�ned. For instane, for the integers we use modulo abstrationmodulo base b (eah integer k is abstrated by (kmod b)) and interval abstrationwith boundariesm;n (k is abstrated by one of \< �m",�m; : : : ; n�1; n,\> n").We also de�ned suitable operators on the abstrat values whih safely over-approximate the original funtions in the sense of De�nition 11.However, we an not use diretly the algebra C for a Galois abstration sineit is not lattie-ordered. Hene we work with P(C) where the lattie-order is setinlusion. Then every set of onrete values is mapped to set of abstrat valuesvia �s, whereas s is the orresponding onretization.

4 Analysis of Attributed Graph Transformation SystemsSine GTSs are in general Turing-powerful, over-approximation tehniques areneeded for their analysis. In our ase we abstrat AGTSs by oloured Petrinets, whih are a oneptually simpler formalism whih is easier to analyse. In[3℄ an approximated unfolding tehnique for GTSs was presented, in whih|ompared to standard unfolding tehniques|additional folding steps are used,whih over-approximate but guarantee a �nite approximation. The resultingover-approximation is a so-alled Petri graph whih is a Petri net with an addi-tional hypergraph struture, i.e., the hyperedges are at the same time the plaesof the net. Our idea here is to onstrut an attributed Petri graph whih over-approximates an AGTS: an attributed Petri graph onsists of an attributed (oroloured) Petri net and a hypergraph struture over it. Our notation is orientedon oloured Petri nets [12℄ and algebrai high-level nets [8℄.4.1 Attributed Petri graphsWe now formally de�ne attributed Petri nets and attributed Petri graphs. Weonsider a �xed set of labels � and a funtion ltype : �! S.By A� we denote the free ommutative monoid overA with monoid operation�, whose elements are also alled multisets. A multiset M 2 A� an be writtenas a formal sum M = La2Ama � a and given M we write M(a) to denotethe oeÆient ma. A funtion f : A ! B an be extended to a funtion f :A� ! B� on multisets as follows: For M 2 A� we de�ne M 0 = f(M) withM 0(b) = Pa2f�1(b)M(a) for every b 2 B. Besides � we also use di�ereneM 	M 0, where M;M 0 2 A� and inlusion, de�ned by M � M 0, when thereexists M 00 2 A� suh that M �M 00 =M 0We will now introdue attributed Petri nets whih imitate oloured nets [12℄in their graphial representation, and whih are basially algebrai high-level nets[8℄ with small variations. For instane, ompared to [8℄, we only allow variables,but not arbitrary terms in the preset of a transition.De�nition 12 (attributed Petri net). Let A be a �-algebra. An A-attributedPetri net is a tuple N = (S; T; l; �(); ()�; guard ;m0), where S is a set of plaes,T is a set of transitions, l : S ! � is a labelling funtion, �(); ()� : T !(S ! (T (�;X)S)�) are pre- and postset funtions, guard : T ! T (�;X)Boolis a guard funtion, and m0 is the initial marking of the net. A marking of anattributed Petri net is a funtion m : S ! A�S . We also require that:(1) Eah element of the multisets �t(s), t�(s) and m(s) is of sort ltype(l(s)).(2) The multiset Ls2S �t(s) = X 0 ontains only variables, eah with multipli-ity 1. Furthermore, the elements of t�(s) are ontained in T (�;X 0) andguard(t) 2 T (�;X 0)Bool .Elements of m(s) (whih are elements of the arrier sets) are also alledtokens. For a marking m de�ne jmj : S ! N as jmj(s) = jm(s)j, i.e., eah plaeis assoiated with the number of tokens it ontains.

A transition t is enabled for the marking m if there exists a binding h :T (�;X) ! AS suh that h(guard(t)) 2 TA and for eah plae s it holds thatm(s) � h(�t(s)). An enabled transition with a given binding h an be �red andthe marking m of the net will be transformed into m0, denoted by m [t; him0:m0(s) = m(s)	 h(�t(s))� h(t�(s)):We onsider a Petri graph as onsisting of an attributed Petri net and anon-attributed hypergraph struture over it.De�nition 13 (attributed Petri graph). Let G = (R; G0) be an AGTS. AnA-attributed Petri graph (over R) is a tuple P = (G;N ; pN ; �), where G is a(non-attributed) hypergraph, N is an A-attributed Petri net where the plaes arethe edges of G, pN assoiates to eah transition t a rule pN(t) = (L;R; �; g) 2 Rsuh that guardP (t) = g and � assoiates to eah transition t from N with pN(t)as above a (non-attributed) hypergraph morphism �(t) : L [R ! G suh that�t(s) =L�(t)(e)=s;e2EL attrL(e) and t�(s) =L�(t)(e)=s;e2ER attrR(e).An attributed Petri graph for G is a pair (P; �), where P = (G;N; pN ; �) isan attributed Petri graph over R and � : G0 ! G is a (non-attributed) graphmorphism suh that m0(s) =L�(e)=s attrG0(e) for eah edge e 2 EG0 .Note that the edges of the graph are at the same time the plaes of the netand that the transitions are labelled with rules of the AGTS.For eah marking m of an attributed Petri graph we de�ne an attributedgraph graph(m) as follows: �rst we take the subgraph G0 of G with edge setE0 = fe j m(e) 6= ;g and with all nodes adjaent to some edge in E0. Assumethat m(e) =Lki=1 ai is the marking of e 2 E0. Now we replae in G0 eah e byk edges e1; : : : ; ek with lG(ei) = lG(e), G(ei) = G(e) and attrG(ei) = ai.4.2 Approximated UnfoldingWe now desribe how to obtain an attributed Petri graph from a given AGTS.First, we unfold the underlying GTS in an approximative way as it is desribedin [3℄ without taking attributes into onsideration. This is done by starting withthe initial graph and applying unfolding steps that \simulate" rule appliationsby adding transitions, as well as folding steps that merge left-hand sides whihare ausally dependent. Sine the approximated unfolding proedure supplies uswith morphisms � and �(t) as desribed in De�nition 13 there is a unique wayof adding attributes to the Petri graph after the approximated unfolding. Thismeans that attributes do not a�et the unfolding proedure itself in any way.Still, it is neessary to show that the resulting Petri graph is a valid over-approximation.Proposition 1. Let P be an attributed Petri graph for a GTS G obtained asdesribed above. Then, there exists a simulation relation4 R between the reah-able graphs in G and the reahable markings in P suh that: (G0;m0) 2 R and4 In the simulation game every appliation of a rule r must be answered by a transitionlabelled r.

for every pair (G;m) there exists an edge-bijetive attributed hypergraph mor-phism (with the identity as algebra homomorphism) G! graph(m). Spei�allythis means that every graph reahable in G is over-approximated by a reahablemarking of P .We extended Augur 2 [15℄ to onstrut and analyse over-approximations ofAGTSs. Fig. 2 depits the oarsest over-approximation for the AGTS in Fig. 1omputed by Augur 2. Plaes, whih oinide with the edges, are depited asboxes with rounded orners, with irle-shaped tokens inside. Transitions arerepresented by thin blak retangles with guard onditions and preset/postsetannotations. For instane 10x on an ar leaving a plae means that one token isremoved and its value bound to x. Note that the over-approximation below istoo oarse sine the error edge an be overed. Hene abstration re�nement isneessary.
Cross Forward

1

Error

1

Cross Backward
(x=7)

B C1’ y

1’ y

1’ y

1’ y

1’ x*y

1’ x

1’ x

1’ x

1’ x

1 2 2

Error
A

1’ y
Create B

1’ y

1’ y+1Fig. 2. Petri graph approximating the GTS (�rst approximation).4.3 Analysing Petri GraphsThe obtained Petri graphs are basially oloured Petri nets [12℄ and an beanalyzed with tehniques developed for suh nets. In partiular we want to hekthat ertain edges (or plaes), alled error edges, an not be overed. Due toProposition 1 we an infer that if this holds for the approximation, it is alsotrue for the original system. However, we still have to handle in�nite arriersets, whih is done by attribute abstration. We show here that if the attributesare orretly abstrated, then the abstrat version of a Petri graph orretlyover-approximates the onrete version.In the following we assume that AGTSs are attributed over an algebra A,whih will be abstrated by an algebra B via a Galois onnetion (�s; s) (seeDe�nition 11). If we take a Petri graph P attributed over A this an be easilyseen as a Petri graph attributed over B by applying �s to all elements of the

initial marking. The (abstrat) Petri graph obtained in this way is denotedby P a.The following proposition shows how the abstrat Petri graph P a an beused in order to analyse P . But let us �rst �x some notation: For two multisetsM1;M2 we write M1 v M2 if there is a bijetion from M1 to M2 suh thateah element of M1 is smaller than or equal to its image in M2 (with respetto the information ordering v). For two markings we write m̂1 v m̂2 wheneverm̂1(s) v m̂2(s) for eah plae s.Proposition 2. For the attributed Petri graphs P and P a it holds that there isa simulation relation R on the reahable markings suh that (m0;ma0) 2 R andfor eah pair (m; m̂) 2 R we have ma v m̂.To analyse attributed Petri graphs we need to hek whether ertain markingsor plaes an be overed by a reahable marking. Hene we adapted two suhtehniques, overability graphs [19℄ and bakward reahability [1℄, to attributedPetri graphs with �nite arrier sets and implemented them in Augur 2. Wealso extended both methods to provide us with a trae (= ounterexample) toa given overable marking.4.4 Abstration Re�nementThis setion generalizes the abstration re�nement tehnique from [14℄. We adaptthe tehnique of abstration re�nement for AGTS and attributed Petri graphs. Ifthe analysis of the Petri net gives us a spurious ounterexample for the propertyto verify then we an try to eliminate it using ounterexample-guided abstrationre�nement [14℄. In our ase there are two possible ways to re�ne the obtainedover-approximation: either we an re�ne the graph struture of the obtainedover-approximation or the attribute abstration. One of the hallenges is todetermine whih of the two ases applies.First we de�ne a notion of (abstrat) runs and their orrespondene.De�nition 14 (abstrat run of an AGTS). An abstrat run of an AGTS(R; G0) is a sequene of attributed hypergraphs J = (J0)r1 J1)r2 � � �)rnJn), where ri is a rule name, together with (attributed) morphisms 'i : Li+1 ! Jifor eah i = 1; : : : ; n�1, where Li is the left-hand side of rule ri 2 R.Note that we do not demand that Ji an be derived from Ji�1 by applyingrule ri at math 'i (hene the name abstrat). If an abstrat run is derivableit will be alled a real run. The j-th pre�x of J is the run pr j(J) = (J0)r1J1)r2 � � �)rj Jj) together with the morphisms 'i.Let J 0 = (J 00)r1 J 01)r2 : : :)rn J 0n) be another abstrat run with mor-phisms '0i : Li+1 ! J 0i for eah i = 1; : : : ; n�1. We say that J 0 weakly or-responds to J (in symbols J 0 � J) if for eah i = 1; : : : ; n�1 there existedge-bijetive (attributed) morphisms �i : J 0i ! Ji for i = 0; : : : ; n. If further-more the following diagram ommutes we say that J 0 orresponds to J and write

J 0n J . Li+1 '0i //'i 77J 0i �i // JiIn both ases, we require that the attributed morphisms are equipped with iden-tity homomorphisms. If they have only v-homomorphisms (as de�ned in De�ni-tion 11) we talk about (weak) v-orrespondene and write �v andnv.For later use we need following onstrution (f. [14℄): Let G be a hypergraphand m a marking of the underlying Petri net, spei�ally m 2 E�G . That is, thereexists a (non-attributed) morphism : graph(m) ! G. Now let ' : G0 ! Gbe a morphism suh that '�(EG0) � jmj. Then there exists an edge-injetivemorphism em;' : G0 ! graph(m) suh that Æ em;' = '.We will mainly use this onstrution for the speial ase where ' = �(t)jL :L ! G, i.e., ' is a math of the left-hand side in the Petri graph (see De�ni-tion 13), and m is a marking that allows to �re transition t.Petri graphs an, as mentioned above, be seen as symboli representations ofgraph transition systems and also as representations of sets of abstrat runs.De�nition 15 (abstrat runs of an attributed Petri graph). Let (P; �)with P = (G;N; pN ; �) be an attributed Petri graph for an AGTS (R; G0). Fur-thermore let m0[t1; h1i : : : [tn; hnimn be a �ring sequene of the net N and letri = pN (ti) be the rules orresponding to the transitions. We onsider (non-attributed) morphisms �i+1 = emi;�(ti+1)jLi+1 : Li+1 ! graph(mi), where Li+1is the left-hand side of rule ri+1 and extend them in the anonial way toattributed morphisms by adding bindings. It is easy to see that the sequenegraph(m0))r1 graph(m1))r2 : : :)rn graph(mn) together with the morphisms'i = (�i; hi) is an abstrat run.Eah real run JR = (G0)r1 G1)r2 : : :)rn Gn) of the AGTS (R; G0)an be onsidered as an abstrat run where the 'i : Li+1 ! Gi represent themathes of the left-hand sides of the rules ri.Now let G be an AGTS, let P be an attributed Petri graph approximat-ing G and let P a be the abstrat Petri graph derived from P . That is, Pover-approximates the (graph) struture, whereas P a additionally abstrats at-tributes.Then, for every real run JR of G there exists an abstrat run JA of P , suhthat JR n JA. And furthermore for every abstrat run JA of P there existsan abstrat run ĴA of P a suh that JAnv ĴA. This is a diret onsequeneof the simulation property (see Propositions 1 and 2). Sine orrespondene istransitive this means that every real run JR of G an be assoiated with anabstrat run ĴA of P a suh that JRnv ĴA.We start abstration re�nement with an attributed Petri graph Pa whih isobtained by unfolding an AGTS G and interpreting the resulting Petri graphin B (as desribed in the previous setion). If the property we want to verify isviolated, we obtain a ounterexample of the following form:

m̂0[t1; ĥ1i : : : [tn; ĥnim̂n;where the ti are transitions and the ĥi are the orresponding bindings. Usuallythe AGTSs that we onsider have an error rule and the property we want toverify is that this rule is not appliable. Hene an error trae inludes a �ring ofthe orresponding error transition as the last step. It an be seen as an abstratrun (with abstrated attributes) of the following form:ĴA = (graph(m̂0))r1 graph(m̂1))r2 : : :)rn graph(m̂n));where rj = pN (tj) and (�j ; ĥj) : Lj ! graph(m̂j�1) are the orrespondingmorphisms from the left-hand side of rj to graph(m̂j�1) for j = 1; : : : ; n.After analysing the Petri graph P a and searhing for ounterexamples thereould be the following four possibilities:(1) The property is suessfully veri�ed, i.e., no ounterexample was found in P a.(2) A real (non-spurious) ounterexample ĴA is found. That is, we have JRnvĴA for a real run JR of G. In this ase we have found an error.(3) The deteted ounterexample is spurious. This means that no real run JRwith JRnv ĴA exists. However, there ould be real runs J 0R shorter than ĴAthat orrespond to a pre�x pr i(ĴA) of the ounterexample, i.e., J 0Rnv pr i(ĴA).Let k be the maximal length of suh a run. The set of all suh maximal real runs(there ould be several of them) is denoted by H.For a given J 0R 2 H there always exists a (unique) run J 0A of the at-tributed Petri graph P (with onrete attributes) with morphisms (�j ; hj) :Lj ! graph(mj�1) (morphisms �j as above) suh that J 0Rn J 0A (see Fig. 3).It is easy to see that also J 0Anv pr i(ĴA).
graph(m0)
G0

L1

�0
�̂0

r1
r1
r1

graph(m1)
G1�̂1
�1

graph(m̂1)
L2

...
...
...r2

r2
r2

'0 '1
(�1; h1) (�1; ĥ1) (�2; h2) (�2; ĥ2)graph(m̂0)

graph(mi)�iGi�̂igraph(m̂i)
J 0R:

pri(ĴA):

J 0A:

Fig. 3. Counterexample (abstrat and real runs with orresponding left-hand sides)We now distinguish the following two ases:(3a) We say that the over-approximation is struturally too oarse if for someJ 0R 2 H the orresponding run J 0A an be extended to a run J 00A of length

k + 1 with a morphism (�k+1; hk+1) : Lk+1 ! graph(mk) in suh a way thatJ 00A nv prk+1(ĴA). The set of suh pre�xes of H is denoted by HS . Belowwe desribe a tehnique based on the one proposed in [14℄ whih allows us toeliminate the obtained ounterexample in this ase.(3b) In the last ase for eah run J 0R 2 H suh that J 0R nv prk(ĴA), theorresponding run J 0A an not be extended as in the previous ase, i.e.,HS = ;. Ifthis holds then we say that in the over-approximationP a the attribute abstrationis too oarse.In the �rst two ases we have solved the problem either with a positive or anegative outome. If the obtained over-approximation is struturally too oarse(ase (3a)) and does not allow us to verify the property, a ounterexample-guidedabstration re�nement tehnique [14℄ for re�ning the approximation is available.It uses the set HS of pre�xes of the ounterexample and re�nes the strutureof the Petri graph. This is done by identifying whih nodes have previouslybeen merged or folded erroneously and by restarting the approximated unfold-ing from srath, but making sure that those node are now kept separate. Thetehnique desribed in [14℄ for non-attributed GTSs an be applied here withoutmodi�ation. As in [14℄, we will eliminate not only the spurious run ĴA but allother abstrat runs orresponding to it and at the same time having a weakorrespondene to some run in HS .Proposition 3. The struturally re�ned Petri graph P 0a onstruted above doesnot ontain any run Ĵ 0A whih v-orresponds to the spurious run ĴA of P a andhas a weak v-orrespondene to some run in HS . Furthermore if P 0a ontainsa spurious run Ĵ 0A, then it v-orresponds to some run ĴA in P a.To re�ne the approximation in the last ase we make our abstration of at-tributes more exat in a prede�ned way. For example for the modulo abstrationwe an inrease the modulo base b (we usually multiply it by two), and for theinterval abstration we an inrease the interval bounds m and/or n. However inthis ase we have no guarantee that the spurious ounterexample will be elim-inated. In the implementation the attribute abstration is re�ned a prede�nednumber of times and if spurious ounterexample are then still reproduible, weterminate with the answer \don't know". Future work is the integration of theprediate abstration whih will be disussed in the onlusion.So our results for the re�nement of attribute abstration are weaker than inthe ase of struture re�nement. But we an still show that whenever we re�nethe attribute abstration in a ertain way, no new spurious runs will appear.Proposition 4. Let (�s : As ! Bs, s : Bs ! As)s2S be the Galois onnetionbetween algebras A, B whih was originally used for attribute abstration. Nowlet (�0s : As ! Ds, 0s : Ds ! As)s2S be a new onnetion from A to D.We furthermore assume that there exists a Galois onnetion from D to Bwith mappings �00s , 00s suh that �s w �00s Æ�0s. Then if the re�ned Petri graph P 0aontains a run Ĵ 0A , it v-orresponds (with �00s as v-homomorphisms) to somerun ĴA in P a. In partiular, if Ĵ 0A leads to a marking overing an error edge,then the same is true for ĴA.

We an iterate abstration re�nement by storing an arbitrary number ofspurious ounterexamples. Naturally, due to undeidability and the fat thatAGTSs are in general Turing-omplete, there is no guarantee that this loop willever terminate.Example 4. Let us now onsider the Petri graph in Fig. 2 using a modulo ab-stration with base one (unit abstration). The edge labelled Error of the Petrigraph an be overed by �ring transition \Error". This means that either theproperty does not hold or the over-approximation is too oarse. In this ase onean show that the run is spurious, i.e., it has no ounterpart in the originalAGTS and the over-approximation is struturally too oarse (ase (3a)). Apply-ing abstration re�nement gives us a re�ned Petri graph (whih is not depitedhere due to spae onstraints).Now an error edge is still in the approximation and a ounterexample an beonstruted (via rules \Cross Bakward", \Error"). However, this ounterexam-ple an not be reprodued without attribute approximation, whih means thatthe abstration is too oarse and should be re�ned (ase (3b)). By using basetwo in the modulo abstration we obtain a Petri graph in whih the Error-edgeis no longer overable, whih means suessful veri�ation.5 Example: Leader EletionIn this setion we sketh the modelling and veri�ation of a leader eletionprotool in a ring arhiteture with AGTSs. The purpose of the protool is toelet a unique leader among the stations in a ring-shaped network.The algorithm uses only loal ommuniation and does not depend on the sizeof the ring. The leader is hosen on the basis of the unique ids of the stations andwill eventually be the station with the smallest id (in our ase: id 1). Eah stationsends a message with its id around the ring. Upon reeption of the message fromits predeessor a station ompares the reeived id with its own id and, if theinoming id is smaller than its own, forwards the message. If the id is larger,then the message is disarded. If a station reeives its own id, then it delaresitself the leader. The protool is parametrized in the sense that we an reaterings of arbitrary size with a potentially in�nite number of stations. We wantto show that we never hoose the wrong leader, i.e., there is never a situationwhere we have a station that has a smaller id than the urrent leader.Conerning the ids we use interval abstration with start interval [0; 1℄. Afterunfolding the AGTS and analysing it via the overability tehnique we obtain aspurious ounterexample. Afterwards three iterations of abstration re�nementan be applied: two with strutural re�nement and one with attribute abstrationin the interval [0; 2℄. The overability hek then shows that we have suessfullyveri�ed the protool. The whole veri�ation proedure for the leader eletionprotool took 48:15 seonds.5 More details on this ase study will be reportedin [17℄.5 All experiments were made using Augur 2 [15℄ written in C++ under Linux andthe omputer parameters are 2*Genuine Intel(R) 1:66 GHz with 2:0 GB RAM.

6 ConlusionWe have presented a framework for the veri�ation of attributed graph trans-formation systems, using approximated unfoldings, attribute abstration and aounterexample-guided abstration re�nement tehnique.There are some related approahes to the veri�ation of graph transformationsystems in the literature, see for instane [20, 21, 6, 4℄. However, there seems tobe only a small amount of work on the veri�ation and over-approximation ofattributed graph transformation systems. We are urrently aware of attributesin the tool Groove [13℄ for the veri�ation of �nite-state graph transformationsystems. Furthermore AGTSs ould be transformed into the input language ofmore onventional model hekers that do support attributes.This ombination is learly of pratial interest and also raises interestingmethodologial questions. As we have shown the ombination of strutural re-�nements and re�nements of attribute abstrations is non-trivial.Currently we handle the re�nement of attribute abstration semi-automat-ially, by leaving the hoie mainly to the user. Clearly this is not ompletelysatisfatory. A natural question to ask is whether the ounterexample-guidedabstration re�nement approah based on prediate abstration and Craig inter-polation [10, 11℄ an be adapted to our setting. In this approah the abstrationis re�ned by generating new prediates over the program variables, based onthe ounterexample. In our setting the diÆulty is not so muh how to generatethese prediates (after all, we have a spei� ounterexample) but how to inter-pret them over the markings of the Petri net. The situation would be easy if allprediates were unary, sine in this ase we would employ the onept of Galoisonnetions introdued in this artile. However generated prediates typiallyhave a higher arity, often prediates are binary prediates of the form x < y. Forthe original prediate abstration approah this is not a problem sine there areonly �nitely many variables and the value of prediates for an abstrat state anbe desribed in a �nite way. However in our ase there an be arbitrarily manytokens and it is not lear to us how to solve the overability problem for Petrinets with suh an abstration mehanism.In addition we need more (and larger) ase studies in order to test our teh-niques. Currently we are working on the veri�ation of variants of the Needham-Shroeder protool a ryptographi protool used for authentiation (see [17℄).Referenes1. P. Aziz Abdulla, B. Jonsson, M. Kindahl, and D. Peled. A general approah topartial order redutions in symboli veri�ation. In Pro. of CAV '98, pages 379{390. Springer, 1998. LNCS 1427.2. P. Baldan, A. Corradini, J. Esparza, T. Heindel, B. K�onig, and V. Kozioura. Veri-fying red-blak trees. In Pro. of COSMICAH '05, 2005. Proeedings available asreport RR-05-04 (Queen Mary, University of London).3. P. Baldan, A. Corradini, and B. K�onig. A stati analysis tehnique for graphtransformation systems. In Pro. of CONCUR '01, pages 381{395. Springer-Verlag,2001. LNCS 2154.

4. J. Bauer and R. Wilhelm. Stati analysis of dynami ommuniation systems bypartner abstration. In Pro. of SAS '07, pages 249{264. Springer, 2007. LNCS4634.5. P. Cousot. Abstrat Interpretation. ACM Computing Surveys, 1996.6. F.L. Dotti, L. Foss, L. Ribeiro, and O. Marhi Santos. Veri�ation of distributedobjet-based systems. In Pro. of FMOODS '03, pages 261{275. Springer, 2003.LNCS 2884.7. F.L. Dotti, B. K�onig, O. Marhi Santos, and L. Ribeiro. A ase study: Verify-ing a mutual exlusion protool with proess reation using graph transformationsystems. Tehnial Report 08/2004, Universit�at Stuttgart, 2004.8. H. Ehrig, J. Padberg, and L. Ribeiro. Algebrai high-level nets: Petri nets revisited.In Seleted papers from the 9th Workshop on Spei�ation of Abstrat Data Types'92, pages 188{206. Springer, 1994. LNCS 785.9. H. Ehrig, U. Prange, and G. Taentzer. Fundamental theory for typed attributedgraph transformation. In Pro. of ICGT '04, pages 161{177. Springer, 2004. LNCS3256.10. S. Graf and H. Sa��di. Constrution of abstrat state graphs with PVS. In Pro. ofCAV'97, pages 72{83, 1997.11. T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. MMillan. Abstrations fromproofs. In Pro. of POPL'04, pages 232{244. ACM, 2004.12. K. Jensen. Coloured Petri nets: Status and outlook. In ICATPN, pages 1{2, 2003.13. H. Kastenberg. Towards attributed graphs in GROOVE. In Proeedings of Work-shop on Graph Transformation for Veri�ation and Conurreny, volume 05-34 ofCTIT Tehnial Report, pages 91{98, 2005.14. B. K�onig and V. Kozioura. Counterexample-guided abstration re�nement for theanalysis of graph transformation systems. In Pro. of TACAS '06, pages 197{211.Springer, 2006. LNCS 3920.15. B. K�onig and V. Kozioura. Augur 2|a new version of a tool for the analysisof graph transformation systems. In Pro. of GT-VMT '06 (Workshop on GraphTransformation and Visual Modeling Tehniques), volume 211 of ENTCS, pages201{210. Elsevier, 2008.16. V. Kozioura. Veri�ation of random graph transformation systems. In Pro. of GT-VC '06 (Graph Transformation for Veri�ation and Conurreny), volume 175.4of ENTCS, 2006.17. V. Kozyura. Abstration and Abstration Re�nement in the Veri�ation of GraphTransformation Systems. PhD thesis, Universit�at Duisburg-Essen, forthoming.18. M. L�owe, M. Kor�, and A. Wagner. An algebrai framework for the transformationof attributed graphs. In Term graph rewriting: theory and pratie, pages 185{199.John Wiley and Sons Ltd., 1993.19. W. Reisig. Petri Nets: An Introdution. EATCS Monographs on Theoretial Com-puter Siene. Springer-Verlag, Berlin, Germany, 1985.20. A. Rensink and D. Distefano. Abstrat graph transformation. In Pro. of SVV'05 (3rd International Workshop on Software Veri�ation and Validation), volume157.1 of ENTCS, pages 39{59, 2005.21. D. Varr�o. Towards symboli analysis of visual modeling languages. InWorkshop onGraph Transformation and Visual Modeling Tehniques '02, volume 72 of ENTCS.Elsevier, 2002.

