Towards the Verification of
Attributed Graph Transformation Systems*

Barbara Konig and Vitali Kozioura

Abteilung fiir Informatik und Angewandte Kognitionswissenschaft
Universitat Duisburg-Essen, Germany

Abstract. We describe an approach for the verification of attributed
graph transformation systems (AGTS). AGTSs are graph transforma-
tion systems where graphs are labelled over an algebra. We base our ver-
ification procedure on so-called approximated unfoldings combined with
counterexample-guided abstraction refinement. Both techniques were
originally developed for non-attributed systems. With respect to refine-
ment we focus especially on detecting whether the spurious counterex-
ample is caused by structural over-approximation or by an abstraction
of the attributes which is too coarse. The technique is implemented in
the verification tool AUGUR 2 and a leader election protocol has been
successfully verified.

1 Introduction

For practical purposes modelling languages are usually extended with the possi-
bility of adding data types and suitable operations. This is for instance done in
coloured Petri nets [12] and attributed graph transformation systems (AGTSs)
[18,9]. Extending a GTS with attributes allows one to combine the intuitive
graphical aspects of the modelled systems with the natural data structures,
which makes such extended GTSs more suitable for practical applications. In
some cases attributes can be simulated artificially by encoding them into the
graph structure (since GTSs are Turing-complete), but specifying attributes di-
rectly leads to more compact models. This is an advantage with respect to over-
approximation techniques since we have more control over what is abstracted
and in what way it is abstracted.

In the last years we have developed a verification technique for non-attributed
graph transformation systems (GTSs) [3], which allowed us to successfully verify
several case studies [7,2, 16]. The technique approximates GTSs by Petri graphs
(which are Petri nets with additional hypergraph structure) and refines the ob-
tained Petri graph via counterexample-guided abstraction refinement (CEGAR)
when necessary [14]. CEGAR is a standard program analysis technique which re-
fines overly coarse approximations by looking for a spurious run, i.e., a run which
violates the property to be verified, but which has no counterpart in the original
system. Then the approximation is refined in such a way that the spurious run

* Supported by the DFG project SANDS and CRUI/DAAD ViconNI “Models based
on Graph Transformation Systems: Analysis and Verification”.

disappears. This procedure can be repeated, but due to the undecidability of the
verification problem it is not guaranteed that it will eventually give a definitive
yes/no-answer.

In this paper we apply this technique, including abstraction refinement, to
AGTSs. We describe our view on AGTSs as graph transformation systems la-
belled over an algebra and approximate AGTSs by attributed Petri graphs which
are basically coloured Petri nets [12] or algebraic high-level nets [8] equipped with
a hypergraph structure. After performing the approximation described in [3] at-
tributes are added to the resulting Petri graph, which can then be analyzed as a
coloured Petri net. Since the carrier sets underlying data types are often infinite,
we additionally need attribute abstraction, which is standard in the framework
of abstract interpretation [5]. In the conclusion we will discuss how the approach
might be extended to predicate abstraction [10,11]. The verification technique
for AGTSs presented here was implemented in AUGUR 2! [15] and we introduce
a case study concerning a leader election protocol and describe how it has been
verified with AUGUR 2.

2 Attributed Graph Transformation Systems

2.1 Algebras

In this section we describe attributed graph transformation systems (AGTSs).
After introducing the (standard) notion of algebra and the (non-standard) notion
of Boolean algebra, we show how to define and rewrite attributed graphs.

Definition 1 (signature, algebra). A signature X' is a pair (S,F) where S
is a set of sorts and F is a set of function symbols equipped with a mapping
o: F = 8*xS. Sorts will also be called types.

A Y-algebra A consists of carrier sets (As)ses for each sort and a function
fA Ay x--x As, = A, for every function symbol f with o(f) = (s1...5n,5).

For a Boolean Y-algebra we require that S contains the sort Bool and that
we have two subsets T'x, F4 C Apoo; representing the truth values.

By T (XY, X) we denote the usual Y-term algebra, where X is a set of vari-
ables, each equipped with a fized sort.

For an algebra A we denote by As the set As = 4,5 As, i.e., the union of
all carrier sets (under the implicit assumption that they are all disjoint).

Ezxample 1. In our implementation we use an algebra denoted by C with sorts
Bool, Int, Str, Unit (which have as carrier sets the standard truth values, inte-
gers, strings and one-element set respectively) and tuples over the first three
sorts. We consider standard operations, for instance +, —, %, / for the integers
and comparison operators <, <, = in order to obtain truth values. Operators can
also be extended to functions operating on tuples.

We will now define a specific type of algebra needed in the following.

! The tool is available at http://www.ti.inf.uni-due.de/research/augur/.

Definition 2 (powerset algebra). For a given X-algebra A we will denote
by P(A) its powerset algebra which is an algebra over the same signature. The
carrier sets of P(A) are the powersets of the original carrier sets, i.e., P(A)s =
P(As) and function symbols [with F(f) = (s1...n,s) are interpreted as:

FPA AL Ap) = {f s an) | ai € A,

where A; € (P(A))s;. In the case of a Boolean algebra we set Tp(4y = {A" C
-ABool | A'n TA 7& [Z)} and similarly fOT’ Ffp(A) .

Note that in the case of our example algebra C we have four truth values
in P(C) where Tp(c)y = {{true}, {true, false}}, Fpcy = {{false}, {true, false}}.
Going to powersets is a necessary step since the concretization of abstract values,
which will be introduced later, provides us with an entire set of values, as opposed
to a single value. However if we only work with single values, i.e., one-element
sets, we will get exactly the same results as in the original algebra.

Finally we need a notion of algebra homomorphism.

Definition 3 (algebra homomorphism). Let A, B be two X-algebras. An al-
gebra homomorphism h : A — B is a family of maps (hs : As = Bs)ses such
that for each f € F with o(f) = (s1 - .- Sn, Snt1) we have

hsn+1 (fA(aly cee ;an)) = fB(hsl (a1)> sy hsn (an))

2.2 Attributed Graphs

We will now define the notion of graphs we are working with. We consider a
fixed set of labels A and we start with the definition of hypergraphs and their
morphisms.

Definition 4 (hypergraph). A hypergraph G is a tuple (Vi, Eq, ca,la), where
Va is a finite set of nodes, Eg is a finite set of edges, cq : Eq — V& is a con-
nection function, and lg : Eq — A is the labeling function.

We consider a fixed typing function ltype : A — S which associates a sort to
each label. The theory could be easily extended to associating several (named)
attributes to each label and this is how it is handled in our implementation.

We are now ready to introduce attributed hypergraphs. Note that here we
choose a different representation of attributed graphs than in [9] where the focus
is on viewing attributed graphs in the framework of adhesive HLR categories
and where graphs include specific data nodes. One of our main concerns is to
fully separate the graph structure and the attributes for verification purposes.

Definition 5 (attributed hypergraph). Let A be a Y-algebra. An A-attrib-
uted hypergraph is a tuple G = (Vi, Eq, ca,la, attra), where (Va, Eq,ca,la)
is a labelled hypergraph and attrg : Eq — As is a function such that for each
e € Eg it holds that attrg(e) € Auype(io(e))-

We consider nodes of a hypergraph as unlabelled (and without attributes).
Attributes can be added by providing nodes with unary hyperedges which con-
tain the attribute for that node.

Definition 6 (hypergraph morphisms). Let G1,G> be two hypergraphs. A
(hypergraph) morphism ¢ : G; — G4 consists of two total functions py : Vo, —
Vo, and pg : Eq, — Eq, such that for every e € Eq, it holds that lg,(e) =
lg, (pr(e) and py(ca, (€)) = ca,(pr(€)). A morphism is called edge-bijective
(edge-injective) whenever it is bijective (injective) on edges. (We will in the
following drop the subscripts V and E.)

Definition 7 (morphisms of attributed hypergraphs). Let G1,Gs be two
attributed hypergraphs (where G is attributed over A and G2 over B). An at-
tributed hypergraph morphism ¢ = (¢, h) : G1 — G2 consists of a hypergraph
morphism v and an algebra homomorphism h : A — B such that

Ve € Eq, : attrg, (Y (e)) = h(attrg, (e)).

2.3 Rewriting of Attributed Graphs

Attributed hypergraphs can be transformed using rewriting rules which we define
in the following. Our approach follows essentially the presentation in [18], but
without using category theory. Furthermore we use the same restrictions on rules
as in [3] since this greatly simplifies verification.

Definition 8 (attributed rewriting rule). We fiz a signature X and a set X
of variables. An attributed rewriting rule r is a quadruple (L, R, «, g), where L
and R are T (X, X)-attributed hypergraphs, called left-hand side and right-hand
side respectively, o : Vi, = Vg is an injective mapping, indicating how nodes are
preserved, and g € T(X,X) is a guard condition of sort Bool.

We demand that each of the term attributes of L is a single variable of X
(such that each variable appears only once). The set of all variables in the left-
hand side is denoted by X'. The right-hand side R may be attributed with ar-
bitrary terms from T(X,X"). Each rule r is associated with a guard expression
g(’f’) € T(E, XI)Bool-

We demand also that there are no isolated nodes in the left-hand side L and
no isolated nodes in Vg — a(Vy). Additionally E;, must not be empty and there
can not be two edges with the same label in the left-hand side of a rule.

If an instance of the left-hand side is found in the current state of the system,
then this rule can be applied and the instance of the left-hand side of the rule
will be replaced by its right-hand side. We are now ready to define the notion of
attributed graph transformation systems.

Definition 9 (attributed graph transformation system (AGTS)). An
attributed graph transformation system (AGTS) G = (R, Go) over an algebra A
is a finite set of attributed rewriting rules R together with an A-attributed start
hypergraph Gy (also called initial graph).

We now describe in a set-based notation how rules can be applied to at-
tributed graphs. This could also be done categorically.

Definition 10 (rule application). A match of a rewriting ruler = (L, R, «, g)
in an A-attributed graph G is a morphism ¢ = (p,h) : L — G which is injective
on edges. We can apply v to a match in G obtaining a new graph H, written
G = H, whenever the quard expression is satisfied, i.e., h(g) € Ty. The target
graph H is defined as follows

Vi = Ve W (Vg — a(VL)) Eg = (Eg —¢(EL)) W ER

and, defining @ : Vg — Vi by p(a(v)) = p(v) if v € Vi, and B(v) = v otherwise,
the source, target, labelling and attribute functions are given by

e€Ea—p(EL) = cule)=cale), lule)=Ia(e), attru(e)= attra(e)
e€cEr = cule)=9p(cr(e)), lu(e)=Ir(e), attru(e)= h(attrr(e))

That is, a left-hand side is found and replaced by the corresponding right-
hand side. We use a restricted version of the DPO (double-pushout) approach
where we only allow discrete interfaces. Merging as well as deletion of nodes is
forbidden. Edges, however, can be deleted. The new attributes in the right-hand
side are obtained by using h, the binding of the set of free variables X' of the
left-hand side.?

Example 2. We use the simple AGTS shown in Fig. 1 as a running example.
Edges labelled B and C' have integer attributes. The attribute in B is increased
by one whenever a new edge is created, whereas the attribute in C' is multiplied
with the corresponding attribute in B when C' crosses B. The edges A and Error
have no attributes. The property we want to verify is that no Error edge will
ever be created. Note that intuitively this holds since no edge labelled 7 will ever
be created and hence rule “Cross Backward” will never be applied, since C' will
always contain a even attribute value.

3 Approximation of Attributes

In Example 1 we considered an algebra with infinite carrier sets. In order to
analyse the systems thus obtained we need a mechanism of attribute approxi-
mation. Hence we work in the framework of abstract interpretation [5] and start
with the notion of a Galois connection, which is basically a pair of adjoints.

Definition 11 (Galois connection on algebras). Let ¥ = (S, F) be a sig-
nature and let A, B be two algebras over this signature, where each carrier set
is lattice-ordered via C.3

2 Note that in the case of a powerset algebra some elimination of over-approximation
could be useful, by removing attribute values in the right-hand side that did not
satisfy the guard expression. In order to be able to represent the theory in a compact
way we choose not to follow this path at the moment.

3 The partial order C stands for the information ordering. Intuitively whenever a C b,
then a is considered to be more exact, i.e., a conveys more information about the
system state.

Initial Graph
(B (B .5
) 2

Cross Forward
(B)
Ty Y —— ¢

Fig. 1. Example of an attributed graph transformation system

A family of functions (as : As = Bs, vs : Bs = Ag)ses is called Galois
connection on algebras if they are monotone with respect to T and if for all
sE€S:Va€ As:aCys(as(a)) and Vb € By : as(vs(b)) C b.

Finally we require that for each function symbol f with o(f) = (s1...5n,s)
the function fB is a safe over-approzimation of f#, i.e., for all ay,...,a, with
a; € As, it holds that: as(f*(ay,...,a,)) T fB(as, (a1),...,as, (ay)). Note
that this condition says that « is an algebra homomorphism “up to” C. Such
mappings will also be called T-homomorphisms.

Furthermore if A, B are Boolean algebras we require that both use the same
carrier set for Bool, that apoor,YBoor are identities, Ty = Tg, Fu = Fp and
that furthermore truth values respect the information ordering T in the following
sense:

Yo, 0": (VVEvAV €Ty =veTy) (and similarly for F4).

Ezample 3. The algebra C that is used by our implementation allows several
possible abstractions via algebras with finite carrier sets, some of which are
already predefined. For instance, for the integers we use modulo abstraction
modulo base b (each integer k is abstracted by (k mod b)) and interval abstraction
with boundaries m, n (k is abstracted by one of “< —m”,—m, ..., n—1,n,“>n").
We also defined suitable operators on the abstract values which safely over-
approximate the original functions in the sense of Definition 11.

However, we can not use directly the algebra C for a Galois abstraction since
it is not lattice-ordered. Hence we work with P(C) where the lattice-order is set
inclusion. Then every set of concrete values is mapped to set of abstract values
via ag, whereas 7, is the corresponding concretization.

4 Analysis of Attributed Graph Transformation Systems

Since GTSs are in general Turing-powerful, over-approximation techniques are
needed for their analysis. In our case we abstract AGTSs by coloured Petri
nets, which are a conceptually simpler formalism which is easier to analyse. In
[3] an approximated unfolding technique for GTSs was presented, in which—
compared to standard unfolding techniques—additional folding steps are used,
which over-approximate but guarantee a finite approximation. The resulting
over-approximation is a so-called Petri graph which is a Petri net with an addi-
tional hypergraph structure, i.e., the hyperedges are at the same time the places
of the net. Our idea here is to construct an attributed Petri graph which over-
approximates an AGTS: an attributed Petri graph consists of an attributed (or
coloured) Petri net and a hypergraph structure over it. Our notation is oriented
on coloured Petri nets [12] and algebraic high-level nets [8].

4.1 Attributed Petri graphs

We now formally define attributed Petri nets and attributed Petri graphs. We
consider a fixed set of labels A and a function ltype : A — S.

By A® we denote the free commutative monoid over A with monoid operation
@, whose elements are also called multisets. A multiset M € A® can be written
as a formal sum M = @, 4 ma - a and given M we write M(a) to denote
the coefficient m,. A function f : A — B can be extended to a function f :
A® — B on multisets as follows: For M € A9 we define M’ = f(M) with
M'(b) = > 4ep-15) M(a) for every b € B. Besides @ we also use difference
M © M', where M, M' € A® and inclusion, defined by M < M', when there
exists M" € A® such that M & M" = M’

We will now introduce attributed Petri nets which imitate coloured nets [12]
in their graphical representation, and which are basically algebraic high-level nets
[8] with small variations. For instance, compared to [8], we only allow variables,
but not arbitrary terms in the preset of a transition.

Definition 12 (attributed Petrinet). Let A be a ¥-algebra. An A-attributed
Petri net is a tuple N = (S, T,1, *(),()®, guard, mo), where S is a set of places,
T is a set of transitions, I : S — A is a labelling function, *(),()* : T —
(S = (T(X2,X)s)?) are pre- and postset functions, guard : T — T(2,X) oo
is a guard function, and myg is the initial marking of the net. A marking of an
attributed Petri net is a function m : S — .Ai?. We also require that:

(1) Each element of the multisets °t(s), t*(s) and m(s) is of sort ltype(l(s)).

(2) The multiset @, ¢ °t(s) = X' contains only variables, each with multiplic-
ity 1. Furthermore, the elements of t*(s) are contained in T(X,X") and
guard(t) € T(X, X") oot

Elements of m(s) (which are elements of the carrier sets) are also called
tokens. For a marking m define |m| : S — N as |m|(s) = |m(s)|, i.e., each place
is associated with the number of tokens it contains.

A transition t is enabled for the marking m if there exists a binding h :
T(X,X) = As such that h(guard(t)) € T4 and for each place s it holds that
m(s) > h(®t(s)). An enabled transition with a given binding h can be fired and
the marking m of the net will be transformed into m/', denoted by m [t, h) m':

m'(s) = m(s) © h(*#(s)) h(t*(s))-

We consider a Petri graph as consisting of an attributed Petri net and a
non-attributed hypergraph structure over it.

Definition 13 (attributed Petri graph). Let G = (R, Gy) be an AGTS. An
A-attributed Petri graph (over R) is a tuple P = (G,N,pn,), where G is a
(non-attributed) hypergraph, N is an A-attributed Petri net where the places are
the edges of G, pn associates to each transition t a rule pn(t) = (L, R,a,g9) € R
such that guard p(t) = g and p associates to each transition t from N with pn(t)
as above a (non-attributed) hypergraph morphism u(t) : LU R — G such that
*1(s) = Dty (e)=s.ecr,, attro(e) and t°(s) = B, 1) (e)=s,ccpy Wirr(e).

An attributed Petri graph for G is a pair (P,.), where P = (G, N,pn, i) is
an attributed Petri graph over R and v : Go — G is a (non-attributed) graph
morphism such that mo(s) = €, (), attra,(e) for each edge e € Eg, .

Note that the edges of the graph are at the same time the places of the net
and that the transitions are labelled with rules of the AGTS.

For each marking m of an attributed Petri graph we define an attributed
graph graph(m) as follows: first we take the subgraph G’ of G with edge set
E' = {e | m(e) # 0} and with all nodes adjacent to some edge in E’. Assume
that m(e) = @le a; is the marking of e € E'. Now we replace in G’ each e by
k edges eq, ..., e, with lg(e;) =lg(e), ca(ei) = ca(e) and attra(e;) = a;.

4.2 Approximated Unfolding

We now describe how to obtain an attributed Petri graph from a given AGTS.
First, we unfold the underlying GTS in an approximative way as it is described
in [3] without taking attributes into consideration. This is done by starting with
the initial graph and applying unfolding steps that “simulate” rule applications
by adding transitions, as well as folding steps that merge left-hand sides which
are causally dependent. Since the approximated unfolding procedure supplies us
with morphisms ¢ and u(t) as described in Definition 13 there is a unique way
of adding attributes to the Petri graph after the approximated unfolding. This
means that attributes do not affect the unfolding procedure itself in any way.

Still, it is necessary to show that the resulting Petri graph is a valid over-
approximation.

Proposition 1. Let P be an attributed Petri graph for a GTS G obtained as
described above. Then, there ezists a simulation relation* R between the reach-
able graphs in G and the reachable markings in P such that: (Go,mo) € R and

* In the simulation game every application of a rule r must be answered by a transition
labelled .

for every pair (G,m) there exists an edge-bijective attributed hypergraph mor-
phism (with the identity as algebra homomorphism) G — graph(m). Specifically
this means that every graph reachable in G is over-approzimated by a reachable
marking of P.

We extended AUGUR 2 [15] to construct and analyse over-approximations of
AGTSs. Fig. 2 depicts the coarsest over-approximation for the AGTS in Fig. 1
computed by AUGUR 2. Places, which coincide with the edges, are depicted as
boxes with rounded corners, with circle-shaped tokens inside. Transitions are
represented by thin black rectangles with guard conditions and preset/postset
annotations. For instance 1'z on an arc leaving a place means that one token is
removed and its value bound to z. Note that the over-approximation below is
too coarse since the error edge can be covered. Hence abstraction refinement is
necessary.

1x

Cross Backward
(x=7)

Fig. 2. Petri graph approximating the GTS (first approximation).

4.3 Analysing Petri Graphs

The obtained Petri graphs are basically coloured Petri nets [12] and can be
analyzed with techniques developed for such nets. In particular we want to check
that certain edges (or places), called error edges, can not be covered. Due to
Proposition 1 we can infer that if this holds for the approximation, it is also
true for the original system. However, we still have to handle infinite carrier
sets, which is done by attribute abstraction. We show here that if the attributes
are correctly abstracted, then the abstract version of a Petri graph correctly
over-approximates the concrete version.

In the following we assume that AGTSs are attributed over an algebra A,
which will be abstracted by an algebra B via a Galois connection (as,vs) (see
Definition 11). If we take a Petri graph P attributed over A this can be easily
seen as a Petri graph attributed over B by applying a, to all elements of the

initial marking. The (abstract) Petri graph obtained in this way is denoted
by P°.

The following proposition shows how the abstract Petri graph P® can be
used in order to analyse P. But let us first fix some notation: For two multisets
My, My we write M; T M, if there is a bijection from M; to M, such that
each element of M is smaller than or equal to its image in M, (with respect
to the information ordering C). For two markings we write iy C 712 whenever
m1(s) C ma(s) for each place s.

Proposition 2. For the attributed Petri graphs P and P® it holds that there is
a simulation relation R on the reachable markings such that (mg,my) € R and
for each pair (m,m) € R we have m® C .

To analyse attributed Petri graphs we need to check whether certain markings
or places can be covered by a reachable marking. Hence we adapted two such
techniques, coverability graphs [19] and backward reachability [1], to attributed
Petri graphs with finite carrier sets and implemented them in AUGUR 2. We
also extended both methods to provide us with a trace (= counterexample) to
a given coverable marking.

4.4 Abstraction Refinement

This section generalizes the abstraction refinement technique from [14]. We adapt
the technique of abstraction refinement for AGTS and attributed Petri graphs. If
the analysis of the Petri net gives us a spurious counterexample for the property
to verify then we can try to eliminate it using counterexample-guided abstraction
refinement [14]. In our case there are two possible ways to refine the obtained
over-approximation: either we can refine the graph structure of the obtained
over-approximation or the attribute abstraction. One of the challenges is to
determine which of the two cases applies.
First we define a notion of (abstract) runs and their correspondence.

Definition 14 (abstract run of an AGTS). An abstract run of an AGTS
(R,Go) is a sequence of attributed hypergraphs J = (Jo =, J1 =y -+ =4,
Jn), where r; is a rule name, together with (attributed) morphisms @; : Liy1 — J;
for each i =1,...,n—1, where L; is the left-hand side of rule r; € R.

Note that we do not demand that J; can be derived from J; 1 by applying
rule r; at match @; (hence the name abstract). If an abstract run is derivable
it will be called a veal run. The j-th prefiz of J is the run pr;(J) = (Jo =,
J1 =y - =4, Jj) together with the morphisms ;.

Let J" = (J§ = J| =, ... =, J}) be another abstract run with mor-
phisms @} © Liy1 — J! for each i = 1,...,n—1. We say that J' weakly cor-
responds to J (in symbols J' < J) if for each i = 1,...,n—1 there exist
edge-bijective (attributed) morphisms & : J, — J; for i = 0,...,n. If further-
more the following diagram commutes we say that J' corresponds to J and write

J K J.
Li+1 Pi Jz, i Jz
_/
Pi

In both cases, we require that the attributed morphisms are equipped with iden-
tity homomorphisms. If they have only C-homomorphisms (as defined in Defini-
tion 11) we talk about (weak) C-correspondence and write < and <.

For later use we need following construction (cf. [14]): Let G be a hypergraph
and m a marking of the underlying Petri net, specifically m € Eg . That is, there
exists a (non-attributed) morphism v : graph(m) — G. Now let ¢ : G' = G
be a morphism such that ¢®(Eg/) < |m|. Then there exists an edge-injective
morphism e, ,, : G' = graph(m) such that ¢ o e, , = ¢.

We will mainly use this construction for the special case where ¢ = u(t)|r, :
L — @G, ie., ¢ is a match of the left-hand side in the Petri graph (see Defini-
tion 13), and m is a marking that allows to fire transition ¢.

Petri graphs can, as mentioned above, be seen as symbolic representations of
graph transition systems and also as representations of sets of abstract runs.

Definition 15 (abstract runs of an attributed Petri graph). Let (P,t)
with P = (G,N,pn, i) be an attributed Petri graph for an AGTS (R,Go). Fur-
thermore let mo[t1, h1) ... [tn, hn)my be a firing sequence of the net N and let
r; = pn(t;) be the rules corresponding to the transitions. We consider (non-
attributed) morphisms vi1 = Cmiultivn)lesy, © Lit1 = graph(m;), where L1
is the left-hand side of rule r;y; and extend them in the canonical way to
attributed morphisms by adding bindings. It is easy to see that the sequence
graph(mg) =, graph(my) =, ... =, graph(my) together with the morphisms
w; = (vi, hy) is an abstract run.

Each real run Jg = (G() = G1 = Gn) of the AGTS (R, G())
can be considered as an abstract run where the ¢; : L;11 — G; represent the
matches of the left-hand sides of the rules r;.

Now let G be an AGTS, let P be an attributed Petri graph approximat-
ing G and let P* be the abstract Petri graph derived from P. That is, P
over-approximates the (graph) structure, whereas P® additionally abstracts at-
tributes.

Then, for every real run Jg of G there exists an abstract run J4 of P, such
that Jp < Ja. And furthermore for every abstract run J4 of P there exists
an abstract run jA of P* such that Ja K¢ jA This is a direct consequence
of the simulation property (see Propositions 1 and 2). Since correspondence is
transitive this means that every real run Jr of G can be associated with an
abstract run J4 of P® such that Jr K¢ Ja.

We start abstraction refinement with an attributed Petri graph P¢ which is
obtained by unfolding an AGTS G and interpreting the resulting Petri graph
in B (as described in the previous section). If the property we want to verify is
violated, we obtain a counterexample of the following form:

oty ha) ... [ty B)1,

where the ¢; are transitions and the h; are the corresponding bindings. Usually
the AGTSs that we consider have an error rule and the property we want to
verify is that this rule is not applicable. Hence an error trace includes a firing of
the corresponding error transition as the last step. It can be seen as an abstract
run (with abstracted attributes) of the following form:

jA = (graph(mo) =, graph(my) =, ... =, graph(im,)),

where r; = pn(t;) and (vj,h;) : Lj — graph(in;_,) are the corresponding
morphisms from the left-hand side of r; to graph(imj_,) for j =1,...,n.

After analysing the Petri graph P® and searching for counterexamples there
could be the following four possibilities:

(1) The property is successfully verified, i.e., no counterexample was found in P?.

(2) A real (non-spurious) counterexample 74 is found. That is, we have Jp <<
J4 for a real run Jg of G. In this case we have found an error.

(3) The detected counterexample is spurious. This means that no real run Jg
with Jr K jA exists. However, there could be real runs jR shorter than jA
that correspond to a prefix prl(jA) of the counterexample, i.e., Jj, < prl(jA).
Let k be the maximal length of such a run. The set of all such maximal real runs
(there could be several of them) is denoted by H.

For a given [J} € H there always exists a (unique) run J) of the at-
tributed Petri graph P (with concrete attributes) with morphisms (v;,h;) :
Lj — graph(m;_,) (morphisms v; as above) such that Jp << J) (see Fig. 3).
It is easy to see that also J) <<c pr;i(Ja)-

Ji graph(mo) = graph(mi) > ... graph(m)
o & & ‘
NS G;
w
pri(Ja) graph(in;)

Fig. 3. Counterexample (abstract and real runs with corresponding left-hand sides)

We now distinguish the following two cases:

(3a) We say that the over-approximation is structurally too coarse if for some
Jh € H the corresponding run J) can be extended to a run Jj of length

k 4+ 1 with a morphism (vgi1,hgt1) @ Liy1 — graph(my) in such a way that
TN K prig (J4). The set of such prefixes of # is denoted by #g. Below
we describe a technique based on the one proposed in [14] which allows us to
eliminate the obtained counterexample in this case.

(3b) In the last case for each run Jj € H such that Jh <<c pri(Ja), the
corresponding run J) can not be extended as in the previous case, i.e., Hg = 0. If
this holds then we say that in the over-approximation P® the attribute abstraction
18 too coarse.

In the first two cases we have solved the problem either with a positive or a
negative outcome. If the obtained over-approximation is structurally too coarse
(case (3a)) and does not allow us to verify the property, a counterexample-guided
abstraction refinement technique [14] for refining the approximation is available.
It uses the set Hg of prefixes of the counterexample and refines the structure
of the Petri graph. This is done by identifying which nodes have previously
been merged or folded erroneously and by restarting the approximated unfold-
ing from scratch, but making sure that those node are now kept separate. The
technique described in [14] for non-attributed GTSs can be applied here without
modification. As in [14], we will eliminate not only the spurious run 74 but all
other abstract runs corresponding to it and at the same time having a weak
correspondence to some run in Hs.

Proposition 3. The structurally refined Petri graph pe constructed above does
not contain any Tun ._7A which C-corresponds to the spurious run Ja of P* and
has a weak C-correspondence to some run in Hs. Furthermore if P'® contains
a Spurious Tun jjl, then it C-corresponds to some run jA mn P®.

To refine the approximation in the last case we make our abstraction of at-
tributes more exact in a predefined way. For example for the modulo abstraction
we can increase the modulo base b (we usually multiply it by two), and for the
interval abstraction we can increase the interval bounds m and/or n. However in
this case we have no guarantee that the spurious counterexample will be elim-
inated. In the implementation the attribute abstraction is refined a predefined
number of times and if spurious counterexample are then still reproducible, we
terminate with the answer “don’t know”. Future work is the integration of the
predicate abstraction which will be discussed in the conclusion.

So our results for the refinement of attribute abstraction are weaker than in
the case of structure refinement. But we can still show that whenever we refine
the attribute abstraction in a certain way, no new spurious runs will appear.

Proposition 4. Let (as : As = Bs, vs : Bs = As)ses be the Galois connection
between algebras A, B which was originally used for attribute abstraction. Now
let (a,: As = Ds, v. : Ds = As)ses be a new connection from A to D.

We furthermore assume that there exists a Galois connection from D to B
with mappings o, v such that s 3 af o, Then if the refined Petri graph P'
contains a Tun ._7A , it C-corresponds (with o/ as T-homomorphisms) to some
run Ja in P®. In particular, if j}l leads to a marking covering an error edge,
then the same is true for jA.

We can iterate abstraction refinement by storing an arbitrary number of
spurious counterexamples. Naturally, due to undecidability and the fact that
AGTSs are in general Turing-complete, there is no guarantee that this loop will
ever terminate.

Ezample 4. Let us now consider the Petri graph in Fig. 2 using a modulo ab-
straction with base one (unit abstraction). The edge labelled Error of the Petri
graph can be covered by firing transition “Error”. This means that either the
property does not hold or the over-approximation is too coarse. In this case one
can show that the run is spurious, i.e., it has no counterpart in the original
AGTS and the over-approximation is structurally too coarse (case (3a)). Apply-
ing abstraction refinement gives us a refined Petri graph (which is not depicted
here due to space constraints).

Now an error edge is still in the approximation and a counterexample can be
constructed (via rules “Cross Backward”, “Error”). However, this counterexam-
ple can not be reproduced without attribute approximation, which means that
the abstraction is too coarse and should be refined (case (3b)). By using base
two in the modulo abstraction we obtain a Petri graph in which the Error-edge
is no longer coverable, which means successful verification.

5 Example: Leader Election

In this section we sketch the modelling and verification of a leader election
protocol in a ring architecture with AGTSs. The purpose of the protocol is to
elect a unique leader among the stations in a ring-shaped network.

The algorithm uses only local communication and does not depend on the size
of the ring. The leader is chosen on the basis of the unique ids of the stations and
will eventually be the station with the smallest id (in our case: id 1). Each station
sends a message with its id around the ring. Upon reception of the message from
its predecessor a station compares the received id with its own id and, if the
incoming id is smaller than its own, forwards the message. If the id is larger,
then the message is discarded. If a station receives its own id, then it declares
itself the leader. The protocol is parametrized in the sense that we can create
rings of arbitrary size with a potentially infinite number of stations. We want
to show that we never choose the wrong leader, i.e., there is never a situation
where we have a station that has a smaller id than the current leader.

Concerning the ids we use interval abstraction with start interval [0, 1]. After
unfolding the AGTS and analysing it via the coverability technique we obtain a
spurious counterexample. Afterwards three iterations of abstraction refinement
can be applied: two with structural refinement and one with attribute abstraction
in the interval [0, 2]. The coverability check then shows that we have successfully
verified the protocol. The whole verification procedure for the leader election
protocol took 48.15 seconds.> More details on this case study will be reported
in [17].

% All experiments were made using AUGUR 2 [15] written in C++ under Linux and
the computer parameters are 2*Genuine Intel(R) 1.66 GHz with 2.0 GB RAM.

6 Conclusion

We have presented a framework for the verification of attributed graph trans-
formation systems, using approximated unfoldings, attribute abstraction and a
counterexample-guided abstraction refinement technique.

There are some related approaches to the verification of graph transformation
systems in the literature, see for instance [20,21,6,4]. However, there seems to
be only a small amount of work on the verification and over-approximation of
attributed graph transformation systems. We are currently aware of attributes
in the tool GROOVE [13] for the verification of finite-state graph transformation
systems. Furthermore AGTSs could be transformed into the input language of
more conventional model checkers that do support attributes.

This combination is clearly of practical interest and also raises interesting
methodological questions. As we have shown the combination of structural re-
finements and refinements of attribute abstractions is non-trivial.

Currently we handle the refinement of attribute abstraction semi-automat-
ically, by leaving the choice mainly to the user. Clearly this is not completely
satisfactory. A natural question to ask is whether the counterexample-guided
abstraction refinement approach based on predicate abstraction and Craig inter-
polation [10,11] can be adapted to our setting. In this approach the abstraction
is refined by generating new predicates over the program variables, based on
the counterexample. In our setting the difficulty is not so much how to generate
these predicates (after all, we have a specific counterexample) but how to inter-
pret them over the markings of the Petri net. The situation would be easy if all
predicates were unary, since in this case we would employ the concept of Galois
connections introduced in this article. However generated predicates typically
have a higher arity, often predicates are binary predicates of the form x < y. For
the original predicate abstraction approach this is not a problem since there are
only finitely many variables and the value of predicates for an abstract state can
be described in a finite way. However in our case there can be arbitrarily many
tokens and it is not clear to us how to solve the coverability problem for Petri
nets with such an abstraction mechanism.

In addition we need more (and larger) case studies in order to test our tech-
niques. Currently we are working on the verification of variants of the Needham-
Schroeder protocol a cryptographic protocol used for authentication (see [17]).

References

1. P. Aziz Abdulla, B. Jonsson, M. Kindahl, and D. Peled. A general approach to
partial order reductions in symbolic verification. In Proc. of CAV ’98, pages 379—
390. Springer, 1998. LNCS 1427.

2. P. Baldan, A. Corradini, J. Esparza, T. Heindel, B. Konig, and V. Kozioura. Veri-
fying red-black trees. In Proc. of COSMICAH ’05, 2005. Proceedings available as
report RR-05-04 (Queen Mary, University of London).

3. P. Baldan, A. Corradini, and B. Konig. A static analysis technique for graph
transformation systems. In Proc. of CONCUR ’01, pages 381-395. Springer-Verlag,
2001. LNCS 2154.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

J. Bauer and R. Wilhelm. Static analysis of dynamic communication systems by
partner abstraction. In Proc. of SAS ’07, pages 249-264. Springer, 2007. LNCS
4634.

P. Cousot. Abstract Interpretation. ACM Computing Surveys, 1996.

F.L. Dotti, L. Foss, L. Ribeiro, and O. Marchi Santos. Verification of distributed
object-based systems. In Proc. of FMOODS ’03, pages 261-275. Springer, 2003.
LNCS 2884.

F.L. Dotti, B. Konig, O. Marchi Santos, and L. Ribeiro. A case study: Verify-
ing a mutual exclusion protocol with process creation using graph transformation
systems. Technical Report 08/2004, Universitat Stuttgart, 2004.

H. Ehrig, J. Padberg, and L. Ribeiro. Algebraic high-level nets: Petri nets revisited.
In Selected papers from the 9th Workshop on Specification of Abstract Data Types
’92, pages 188-206. Springer, 1994. LNCS 785.

H. Ehrig, U. Prange, and G. Taentzer. Fundamental theory for typed attributed
graph transformation. In Proc. of ICGT ’04, pages 161-177. Springer, 2004. LNCS
3256.

S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Proc. of
CAV’97, pages 72-83, 1997.

T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan. Abstractions from
proofs. In Proc. of POPL’0/, pages 232-244. ACM, 2004.

K. Jensen. Coloured Petri nets: Status and outlook. In JCATPN, pages 1-2, 2003.
H. Kastenberg. Towards attributed graphs in GROOVE. In Proceedings of Work-
shop on Graph Transformation for Verification and Concurrency, volume 05-34 of
CTIT Technical Report, pages 91-98, 2005.

B. Ko6nig and V. Kozioura. Counterexample-guided abstraction refinement for the
analysis of graph transformation systems. In Proc. of TACAS 06, pages 197-211.
Springer, 2006. LNCS 3920.

B. Konig and V. Kozioura. Augur 2—a new version of a tool for the analysis
of graph transformation systems. In Proc. of GT-VMT 06 (Workshop on Graph
Transformation and Visual Modeling Techniques), volume 211 of ENTCS, pages
201-210. Elsevier, 2008.

V. Kozioura. Verification of random graph transformation systems. In Proc. of GT-
VC 06 (Graph Transformation for Verification and Concurrency), volume 175.4
of ENTCS, 2006.

V. Kozyura. Abstraction and Abstraction Refinement in the Verification of Graph
Transformation Systems. PhD thesis, Universitdt Duisburg-Essen, forthcoming.
M. Lowe, M. Korff, and A. Wagner. An algebraic framework for the transformation
of attributed graphs. In Term graph rewriting: theory and practice, pages 185-199.
John Wiley and Sons Ltd., 1993.

W. Reisig. Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-
puter Science. Springer-Verlag, Berlin, Germany, 1985.

A. Rensink and D. Distefano. Abstract graph transformation. In Proc. of SVV
05 (3rd International Workshop on Software Verification and Validation), volume
157.1 of ENTCS, pages 39-59, 2005.

D. Varré. Towards symbolic analysis of visual modeling languages. In Workshop on
Graph Transformation and Visual Modeling Techniques 02, volume 72 of ENTCS.
Elsevier, 2002.

